
The Unity Game Engine
and the Circuits of
Cultural Software

Benjamin Nicoll
Brendan Keogh

The Unity Game Engine and the Circuits
of Cultural Software

Benjamin Nicoll · Brendan Keogh

The Unity Game
Engine and the

Circuits of Cultural
Software

Benjamin Nicoll
Digital Media Research Centre,
School of Communication
Queensland University of Technology
Brisbane, QLD, Australia

Brendan Keogh
Digital Media Research Centre,
School of Communication
Queensland University of Technology
Brisbane, QLD, Australia

ISBN 978-3-030-25011-9 	 ISBN 978-3-030-25012-6  (eBook)
https://doi.org/10.1007/978-3-030-25012-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2019
This work is subject to copyright. All rights are solely and exclusively licensed by the
Publisher, whether the whole or part of the material is concerned, specifically the rights
of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a warranty, expressed or implied,
with respect to the material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Cover illustration: © John Rawsterne/patternhead.com
Cover design by eStudioCalamar

This Palgrave Pivot imprint is published by the registered company Springer Nature
Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-25012-6

v

Acknowledgements

This book represents a synthesis of two separate research projects,
managed independently by both authors. Benjamin Nicoll thanks the
University of Melbourne’s Networked Society Institute, Intellectual
Property Research Institute of Australia, and Centre for Media and
Communications Law for jointly funding two collaborative research
grants on game engines, which supported his research for this book in
2018. He would also like to thank Megan Richardson, Bjorn Nansen,
Adam Lodders, and Jeannie Paterson for helping to secure this finan-
cial support, and for providing indispensable mentorship and opportu-
nities for collaboration; Dan Golding, Dale Leorke, and Helen Stuckey
for their collegial contributions and suggestions with regard to the above
grants; John Sietsma and Chris Murphy for offering crucial insights into
the world of commercial game engines; and Ceri Hutton, who was gen-
erous in accommodating his research residency at The Arcade. Benjamin
also thanks his interview participants for taking the time to be inter-
viewed, for agreeing to be quoted in publications based on the research,
and for their willingness to share their thoughts and opinions on game
engines. Beyond these acknowledgements, Benjamin thanks his partner,
Britt, for a contribution beyond measure.

Brendan Keogh’s contribution to this book was supported by
the Australian Research Council Discovery Early Career Fellowship,
‘Australian Game Developers and Skills Transfer’ (DE180100973),
and he wishes to thank all his research participants for their insights,
time, and candour. He is also grateful to his friends Dan Golding,

Ben Abraham, and Terry Burdak for their ongoing support. Finally,
Brendan thanks his partner, Helen Berents, not only for her endless
support but also in this case for her expert feedback and suggestions on
how we depict the circuits of our cultural software framework and, as an
International Relations scholar, on our use of the concepts of ‘govern-
ance’ and ‘democracy’.

Both authors would like to thank Mala Sanghera-Warren and Lucy
Batrouney, our editors at Palgrave Macmillan, for their guidance and
support throughout the proposal, peer review, and publication process.
We would also like to thank the anonymous reviewers for their incredibly
thoughtful, detailed, and encouraging comments on the manuscript.

The authors received permission to publish Fig. 1.1 from Grace
Bruxner; Fig. 3.1 from Unity Technologies; and Fig. 6.1 from Bennett
Foddy. Unity and Unity logos are registered trademarks and trademarks
of Unity Technologies or its affiliates in the USA and elsewhere. All
rights reserved. Other images, content, names, or brands are proprietary
of their respective owners. Neither this book nor its authors are affiliated
with, or endorsed or sponsored by, Unity Technologies or its affiliates.

vi   ACKNOWLEDGEMENTS

vii

Contents

1	 The Unity Game Engine and the Circuits
of Cultural Software		 1
The Circuits of Cultural Software		 5
What Is a Game Engine?		 9
What Is Unity?		 13
Book Outline and Context		 16
References		 19

2	 Unity’s Socio-historical Context and Political Economy		 23
Videogame Development Before Game Engines		 25
Developer-Oriented Game Engines: From Proprietary
to Commercial		 27
Player-Oriented Game Engines and Grassroots
Videogame-Making Practices		 31
Unity’s Platform Ecology		 35
References		 43

3	 Workflow: Unity’s Coordination of Individualized
Labour Processes		 47
Unity’s Component-Oriented Design System		 49
Decentring Programmers, Redirecting Workflows		 53
Productive Workflows		 57
References		 60

4	 Grain: Default Settings, Design Principles,
and the Aura of Videogame Production		 63
The Look and Feel of a Game Engine		 66
Design Principles and Design Standards		 72
Iterative Design		 76
References		 79

5	 Literacy: Articulations of Unity Across Development,
Education, and Enthusiast Contexts		 81
‘Why Do You Use Unity?’		 84
Unity in Tertiary Education		 89
Unity in the Enthusiast Discourse		 93
References		 97

6	 Governance: Unity’s Democratization Dispositif		 101
Hatred of Democratization: From ‘Asset Flips’
to ‘Indiepocalypse’		 103
Unity’s Democratization Dispositif		 108
Democratization Beyond Unity		 112
Conclusion		 116
References		 116

Index		 119

viii   CONTENTS

ix

List of Figures

Fig. 1.1	� The detective inspects a bowl of pasta in Grace Bruxner
Presents: The Haunted Island, a Frog Detective Game
(Bruxner, 2018). By permission of Grace Bruxner		 2

Fig. 1.2	 Circuits of cultural software		 7
Fig. 3.1	� A new scene in the Unity editing interface

(version 2018.2.9f1). Unity and Unity logos
are registered trademarks and trademarks of Unity
Technologies or its affiliates in the USA and elsewhere.
All rights reserved. Other images, content, names,
or brands are proprietary of their respective owners.
Neither this book nor its authors are affiliated with,
or endorsed or sponsored by, Unity Technologies or its affiliates		 51

Fig. 4.1	� Screenshot of Doom (id Software, 1993)
(taken by the authors)		 68

Fig. 4.2	� Screenshot of Chex Quest (Digital Café, 1996)
(taken by the authors)		 69

Fig. 6.1	� Screenshot of Getting Over It with Bennett Foddy
(Foddy, 2017). By permission of Bennett Foddy		 106

1

Abstract  This chapter describes the ‘circuits of cultural software’ as
a framework that guides the book and its analysis; offers a preliminary
definition of game engines; and introduces the Unity game engine as
the book’s core case study. It also discusses key terms such as cultural
software, proprietary and commercial game engines, workflow, grain,
literacy, and governance, and situates the book in relation to existing
research on videogame production, game engines, and software culture.
It briefly discusses Unity’s place in Australia’s videogame industry—
which is where the research for the book was conducted—and provides a
chapter outline.

Keywords  Cultural software · Unity game engine · Circuit of culture ·
Game engine · Software studies · Platform studies

The videogame Grace Bruxner Presents: The Haunted Island, a Frog
Detective Game (Bruxner, 2018) is notable in its simplicity. It is approx
imately one hour long, and is premised on exploration, observation, and
reading rather than complex systems, challenges, and goals (see Fig. 1.1).
Its charming visual style and clever writing have seen it nominated for a
number of awards at international videogame festivals, and it has received
extensive coverage in the videogame press. Yet, The Haunted Island was
not made in a typical videogame development environment—that is,
in a studio comprised of large groups of specialist creative workers and

CHAPTER 1

The Unity Game Engine and the Circuits
of Cultural Software

© The Author(s) 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6_1

https://doi.org/10.1007/978-3-030-25012-6_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25012-6_1&domain=pdf

2  B. NICOLL AND B. KEOGH

corporate resources. It was developed primarily by one person, Grace
Bruxner, with programming and audio support from Tom Bowker and
Dan Golding, respectively. Grace wrote the dialogue, modelled and
animated the characters, designed the layout of the virtual world, and
put together the videogame’s events. Notably, Grace was able to make
The Haunted Island while still completing a videogame design under-
graduate degree at RMIT University in Melbourne. To do this, Grace
took advantage of a commercial software tool known as Unity, owned
by Unity Technologies.1 Without paying any fees upfront, and without
the need for low-level computer science skills, Grace used Unity to put
together The Haunted Island’s necessary elements and export ‘builds’ for
Windows and Mac.

Today’s videogame-making ecology is increasingly inhabited by crea-
tors who, like Grace, are taking advantage of low-cost and low barrier to

Fig. 1.1  The detective inspects a bowl of pasta in Grace Bruxner Presents: The
Haunted Island, a Frog Detective Game (Bruxner, 2018). By permission of Grace
Bruxner

1 Where feasible, throughout this book we use ‘Unity Technologies’ to refer to the com-
pany and ‘Unity’ to refer to the game engine owned by that company. However, in pop-
ular vernacular, and thus in many of our respondents’ quotes, Unity Technologies is often
referred to as ‘Unity’.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  3

entry software tools to produce a wide range of videogame works. Many
of these creators are no longer confined to traditional studio environ-
ments, and are instead working across a spectrum of formal and infor-
mal contexts. Several cultural and technical factors have afforded this
diffusion (see Keogh 2019), but in this book we are centrally concerned
with Unity. Unity is a software development tool commonly identified
as a ‘game engine’. Games engines enable programmers, designers, and
artists to build, collaborate on, and run real-time interactive digital con-
tent, including (but not limited to) videogames. In videogame develop-
ment, game engines function as software hubs wherein a vast range of
media forms and skills converge into singular videogame builds. Game
engines have been foundational to videogame development since at
least the mid-1990s, yet the last decade has seen radical shifts in the
availability and accessibility of various game engines, each with their
own affordances. This, in turn, has created fertile ground for a plural-
ity of videogame styles, genres, and developer identities to emerge, in
a manner not dissimilar to the introduction of the Kodak camera or the
8-track tape. Unity holds a notable position in these shifts. Its low-cost
availability, relative ease of use, and ability to scale to a vast range of stu-
dent, amateur, professional, and industrial applications have seen it come
to dominate videogame production globally, to such an extent that the
CEO of Unity Technologies, John Riccitiello, boasts that over half of
all videogame and virtual reality projects on contemporary devices are
developed in Unity (Dillet 2018).

Game engines are typically owned and distributed by commer-
cial companies that are directly invested in ensuring their engines cap-
ture a large market share. Unity, with its accessible editing interface,
flexible licensing structure, and modular toolset, is framed by com-
pany representatives as an almost revolutionary piece of software that is
‘democratizing game development’ and ‘empowering game developers’
(see Unity 2018). To this end, Unity is associated with a levelling out of
work role hierarchies in studio environments—hierarchies that, histori-
cally, have delegated power to programmers and software engineers as
opposed to artists and designers such as Grace. Yet, while Unity claims
to have democratized the means of videogame production, it has also
provoked the ire (and, in some cases, outright hatred) of a small—yet
vocal—group of developers, critics, and players. A brief search on any
videogame enthusiast discussion board yields accusations that Unity’s
accessibility is causing an oversaturation of low-quality videogames,

WPS_1602552414
Highlight

4  B. NICOLL AND B. KEOGH

a dearth of programming skills, and a proliferation of ‘asset flipping’ in
videogame development—a derogatory expression referring to videog-
ames constructed from prefabricated (i.e. store-bought) parts or assets
(Grayson 2018). In a similar vein, some developers perceive a loom-
ing ‘indiepocalypse’ of supply overwhelming demand as a repeat of
the North American videogame industry crash of 1983, which almost
destroyed Atari and a national industry (Pedercini 2017). Some industry
professionals and educators express concern that junior developers and
students are not ‘really’ learning how to make videogames, but simply
learning how to use Unity. Digital marketplaces, such as Valve’s Steam
platform, have made public promises to crack down on ostensibly ‘fake
games’ made in Unity. Scholars, too, express concern that game engines
have, since their introduction in the 1990s, led to a homogenization and
rationalization of videogame production (Kirkpatrick 2013: 105–106;
see also Freedman 2018a: n.p.). Game engines can also be understood in
terms of a broader ‘platformization of cultural production’ (Nieborg and
Poell 2018), wherein cultural production is increasingly controlled by a
small number of dominant platform companies. These varied anxieties
point to a radical reconfiguration of the practices, identities, values, and
contexts associated with videogame development today.

How, then, might we make sense of these cultural, technological, and
design shifts that, at once, seem to empower developers such as Grace,
yet that also seem to make developers beholden to a single company’s
product? It is this duality that this book is centrally concerned with.
In the chapters that follow, we argue that game engines are a form of
cultural software, and that their social, political, technological, and ide-
ological effects must be mapped and analysed. While Lev Manovich
(2013: 21) defines cultural software as ‘software that support actions
we normally associate with culture’, we adopt a narrower definition:
cultural software are software that provide code frameworks for actions
we normally associate with cultural production. We are thinking, here,
of software tools such as Photoshop, Blender, Garage Band, Final Cut
Pro, and, of course, Unity. Such programs, we argue, enrol their users
in circuits of cultural software in the way they influence, mediate, and
articulate the processes and contexts of cultural production. Cultural
software have a fundamental bearing on production workflows across
different design contexts. They encourage media creatives to adopt
particular design methodologies and thus possess varying grains—
protocols, standards, and affordances—that give shape to creative

WPS_1602552414
Highlight

WPS_1602552414
Highlight

WPS_1602552414
Highlight

WPS_1602552414
Highlight

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  5

expression. Cultural software promote the cultivation of specific litera-
cies in their respective areas of cultural production—not simply through
inbuilt tutorials, but also through their embeddedness in company-
specific development environments, educational contexts, and the ‘col-
lective intelligence’ (Lévy 1997; cf. Jenkins 2006) of online communi-
ties. Cultural software deploy platform-based business models and policy
discourses to strategically govern the activities of their users. Through an
analysis of Unity specifically and game engines more generally, this book
makes quite a simple argument: game engines are more than just ‘actors’
situated in studio environments. They are also cultural software whose
articulations within and across a number of interconnected cultural
circuits now need to be taken into account.

The Circuits of Cultural Software

In the following chapters, we develop a framework for understanding
and articulating the effects of cultural software on the process of cultural
work, which we call the circuits of cultural software.2 This framework
has obvious affinities with the influential ‘circuit of culture’ approach
(du Gay et al. 1997), in which a cultural object (the prototypical exam-
ple being the Sony Walkman) is passed through five interlinked sites—
representation, identity, production, consumption, and regulation—and
researched accordingly. The circuit of culture illustrates that cultural
objects gain meaning not only through processes of production and
consumption but also through their representation and articulation in
symbolic and discursive contexts. However, the circuit of culture cannot
be applied wholesale to today’s software-based culture. Software is the
‘engine’ of twenty-first-century cultural production (Manovich 2013),
just as industrialized mass production was the ‘engine’ of cultural pro-
duction in the mid-twentieth century (Adorno and Horkheimer 2002
[1947]). For Manovich (2013: 33), software tools such as Photoshop,

2 We are not the first to utilize traditional cultural studies approaches and methods to
discuss and analyse how cultural software produce and circulate meaning. See, for example,
Zhao et al. (2014) for an analysis of PowerPoint as a ‘semiotic technology’. See also Kline
et al. (2003), for a ‘three circuits of interactivity’ model that synthesises methods from cul-
tural studies, media studies, and media theory to analyse the concept of ‘interactivity’ and
its articulations (and contradictions) within and across videogame technology, culture, and
marketing.

WPS_1602552414
Highlight

6  B. NICOLL AND B. KEOGH

Blender, and Maya ‘play a central role in shaping both the material
elements and many of the immaterial structures that together make
up “culture”’, and so configure the very circuitry that underpins capi-
tal, labour, and creativity in today’s economy. In software culture, sur-
plus value3 is generated from an interplay between informal and formal
modes of human capital (Qiu et al. 2014; Lobato and Thomas 2015;
Keogh 2019), in a way that is consonant with a broader neoliberalization
of work and subjectivity (Chun 2011). The traditional circuit of culture,
with its ‘free flowing, even idealistic’ structure, has difficulty account-
ing for these in/formal flows of human capital and creativity (Qiu et al.
2014: 568). More fundamentally, as Lawrence Grossberg (1997: 256)
argues, ‘one cultural studies investigation is not the same as that of
another’—a fundamental truism not reflected in the non-specificity of
the traditional circuit of culture.

Our framework (Fig. 1.2), therefore, is not meant as a replacement
for the original circuit of culture, but rather as a particular instantiation
of the circuit of culture for our current cultural period. A key difference
is that we are not tracing a single cultural object but rather oftentimes
opaque software frameworks (such as Unity) upon which cultural objects
(such as videogames) are typically produced, and out of which various
cultural scenes, aesthetics, and discourses emerge. As such, the cultural
software being analysed—whether that be Unity, Photoshop, Maya, or
whatever—do not figure in the framework, but are instead constitu-
tive of the framework. In its default state (having not yet been articu-
lated to a particular cultural software), our framework is comprised of
three overlapping circuits of mediation—workflow, grain, and literacy—
encircled and permeated by a broader governance circuit. Workflow refers
to the ways in which cultural software position themselves as ‘meta-
platforms’ (Bratton 2015: 65) for the coordination of intensely indi-
vidualized labour and production processes. Grain refers to the design
methodologies that cultural software orient their users towards. Literacy
refers to the ways of knowing and identifying that come to be associ-
ated with specific cultural software. The broader governance circuit refers

3 ‘Surplus value’ is a term that originates in the writings of Karl Marx, and is gener-
ally used to refer to capital generated from a combination of (a) human labour, which is
exploited to produce commodities, and (b) the market value of said commodities, which far
exceeds the costs associated with exploited labour. The resulting surplus value is redirected
to wealthy capitalists, thus reinforcing a structure of power that subordinates workers.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  7

to the encompassing policy4 discourses and modes of affective inter-
mediation that cultural software deploy in order to enrol potential con-
stituents into their software ecologies. These processes of enrolment
are represented by the arrows pointing into and out of the governance
circuit. We understand enrolment similarly to James Ash’s (2015) con-
cept of the ‘interface envelope’ or Thomas Apperley et al.’s (2016) con-
cept of the ‘aesthetics of recruitment’. That is, cultural software recruit
users not only through their immediate interfaces, but also by monop-
olizing their interface effects to encompass the ‘radically contextual’
(Grossberg 1995, 2010) ‘postdigital’ (Berry and Dieter 2015) envi-
ronments in which they are situated. Potential users, audiences, pub-
lics, and other stakeholders are enrolled into the circuits as constituents.

Fig. 1.2  Circuits of cultural software

4 We use the term ‘policy’ to refer not only to Unity’s policies as a company—its licensing
structures and its terms and conditions, for example—but also its policy platform, which is
articulated through marketing slogans such as ‘democratizing game development’.

8  B. NICOLL AND B. KEOGH

In turn, constituents enrol cultural software into their existing workflows
and design methodologies—refashioning their practitioner identities and
software literacies accordingly. This process of enrolment flows in both
directions; constituents can be enrolled, but they can also ‘short-circuit’
the software ecology for their own ends—that is, they can ‘absorb pro-
ductive energy’ (Qui et al. 2014: 564) from any given software ecology
for potentially transgressive or countercultural purposes. Our conception
of the circuits of cultural software is similar to Benjamin H. Bratton’s
(2015: xviii) concept of the ‘software stack’—an ‘accidental megastruc-
ture’ wherein ‘hard and soft’ tools, techniques, protocols, social forces,
and human actors ‘operate within a modular and interdependent vertical
order’, amounting to a computational form of governmentality whose
remit extends far beyond traditional notions of state sovereignty and,
indeed, culture.

In the pages that follow, we observe Unity’s articulations within and
across the circuits of cultural software. In terms of workflow, we find that
Unity promotes a component-oriented design system; that it decentres
the role of the programmer, who typically sits atop the software devel-
opment hierarchy; and that it operates as a site of ‘deep remixability’
(Manovich 2013: 268) for differentiated software techniques. When it
comes to grain, we find that videogames produced in Unity often pos-
sess an ineffable ‘look and feel’ through the processes and frameworks
that Unity presents as either defaults or preferences. When it comes to
literacy, we find that different constituents understand Unity’s media-
tions as empowering, diversifying, homogenizing, or threatening to the
videogame field. Unity mobilizes each of these circuits—workflow, grain,
and literacy—to enrol constituents into its circuit of governance, where,
under the guise of what we call a ‘democratization dispositif  ’,5 people
are encouraged to self-govern and become entrepreneurs of themselves
(cf. Foucault 2008: 226). It is important to note, here, that video-
game-making workflows, methodologies, literacies, and governance
structures existed before Unity and will continue to exist after Unity.
Moreover, in forwarding such a framework, we do not mean to position
specific software programs as central actors around which a cultural field

5 In using this expression, we are building on Angela McRobbie’s (2016: 86) notion of
a ‘creativity dispositif’, which refers to the ‘toolkits, instruments and new entrepreneurial
pedagogies’ that encourage prospective media creatives to embark on careers in the risk
economy of creative work.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  9

orbits. Rather, by figuring cultural software as these interconnected cir-
cuits, we are interested in how cultural software mobilize, support, and
make serviceable these circuits for their own ends, by bringing constitu-
ents into contact with their governance structures.

Our analysis is driven by three core questions: first, what does Unity
do within and across the circuits of cultural software, in both a technical
and cultural sense? Second, how do videogame developers discover Unity
and become enrolled in its software ecology? A videogame developer may
discover Unity by, for example, starting with the core software, estab-
lishing a workflow and coming to grips with the engine’s grain, before
identifying their own niche within the engine’s software ecology. Finally,
we also ask how Unity discovers and enrols potential Unity constituents?
Someone may discover Unity by first encountering its slogan, ‘democra-
tizing game development’, or by playing various Unity-developed video-
games, or by hearing it decried in an online editorial lamenting the glut
of ‘fake games’. Indeed, one of the key reasons for Unity’s success—and
something that will be discussed in more detail in relation to the engine’s
governance circuit—is its ability to make videogame development seem
like an exciting, accessible, and viable career path. For this reason, the
lines separating each of the circuits are not depicted as impenetrable or
hierarchical but rather porous and flat. Taking influence from the orig-
inal circuit of culture, we note that one could start anywhere in the cir-
cuits and ultimately end up enrolled in the governance circuit—such is
the ‘accidental’ (Bratton 2015) logic of software culture.

What Is a Game Engine?
Game engines are complex entities that elude singular categorization
(see Banks 2013: 44–45). A key argument of this book is that game
engines are, to borrow Grossberg’s (1995, 2010) term, ‘radically contex-
tual’, in that they gain new meanings as they move within and across the
circuits of cultural software described above. Given that there are many
different types of game engines—engines that, moreover, perform dis-
tinct roles and functions depending on the contexts in which they are
articulated—we will start here with a basic (albeit reductive) technical
definition. A game engine is a software tool that enables real-time inter-
active digital content to be created, and a code framework that enables
that content to run on different platforms that might include consoles,
smartphones, and virtual reality devices. Note, here, that game engines

10  B. NICOLL AND B. KEOGH

are used to create ‘real-time interactive digital content’ rather than
simply ‘videogames’. Game engines emerged from and are primarily
associated with the videogame industry, but they can be (and increas-
ingly are) used to make non-videogame content and applications such as
3D animations, architectural models, complex training simulations, and
interactive novels.6 As discussed above, game engines are also cultural
software that encourage users to utilize their individual labour as itself an
‘engine’ of capital and creativity. Crucially, like all cultural software, game
engines offer the promise of self-sovereignty—they make us feel empow-
ered to take control of our creative potentials through accessible drag-
and-drop tools, dashboard interfaces, and customizable management
techniques, all by concealing the true basis of their operability under the
guise of ‘user-friendliness’ (Chun 2011).

Different game engines are optimized for different types of content
creation and production workflows, but on a very basic (and again,
predominantly technical) level, game engines are designed to manage
‘low-level’ computational tasks such as rendering, physics, and arti-
ficial intelligence, thereby freeing up developers to focus on ‘high-
er-level’ aspects of the design process. Many (though not all) of today’s
game engines are interoperable with a range of different cultural soft-
ware, programming languages, production workflows, and middle-
ware7 and plugin capabilities. Unity is a paradigmatic example of this
interoperability, or what Manovich (2013: 268) calls ‘deep remixa-
bility’. An artist, for example, might create assets (2D and 3D mod-
els, visual effects, or textures) using a software tool such as Blender or
Maya, before importing their creations into Unity. Likewise, a program-
mer might write code in a text editor such as Visual Studio and host
it on version control software such as Git, before finally testing their
scripts in Unity. In this way, game engines can be understood as soft-
ware metaplatforms that, to borrow Bratton’s (2015: 65) words, work

6 See Freedman (2018b: 327–328) for a discussion of the use of Unity and Unreal in
non-videogame (or videogame-adjacent) contexts, including NASA’s various spacecraft
simulators and educational software, and BMW’s vehicle prototyping software.

7 Middleware are specialised software tools that expand a game engine’s underlying tool-
set. Examples include standalone art tools such as Autodesk Maya and Blender, music tools
such as FMOD, and physics tools such as Havok. In other contexts, these tools may be
considered standalone pieces of software rather than middleware, but once brought into
contact with game engines, their role is commonly reconceptualized as one of expanding
the engine’s underlying toolset.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  11

‘to gather, support, and superimpose’ the broader ‘pipeline’ of video-
game development. Pipeline is the term given to the production chain
of design concepts, assets, animations, scripts, audio, and more, each of
which are ‘fed into’ the game engine and made interoperable through
the engine’s underlying code framework. Today’s game engines also
tend to encourage rapid iteration, meaning that they make it possi-
ble for developers to prototype content (and iterate on content that
already exists) by switching seamlessly between building, testing, and
editing modes. Game engines tend not to be discrete, unchanging, or
totally black-boxed objects, but rather modular toolsets that can be cus-
tomized to facilitate a variety of different design methodologies and
project types.

Anyone with considerable expertise, time, and resources can build
a custom game engine, though most developers today opt to use an
existing commercial or proprietary game engine. In this book, we use
‘commercial game engine’ to describe third-party engines such as Unity,
because they are available through public commercial contracts. We
use ‘proprietary game engine’ to describe engines that have been cus-
tom-made (usually within studios) and patented by their creators.
However, as will become clear in Chapter 2, the commercial-proprietary
distinction is slippery. Most game engines are inseparable from—indeed,
even synonymous with—intellectual property, end-user license agree-
ments (EULAs), and the patenting of company-specific development
pipelines (see Bogost 2006: 56–57; Nieborg and van der Graaf 2008).
Likewise, many proprietary game engines are partially available for
commercial use, in the form of player-oriented level editors and mod-
ding toolkits. There are also engines that were once considered propri-
etary but are now commercially available, such as the Unreal engine.
‘Commercial’ and ‘proprietary’ are nonetheless industry-standard terms
for differentiating third-party engines (such as Unity) from engines that
have been custom-developed and patented by their creators. It is worth
acknowledging, however, that these terms do not adequately capture the
breadth of videogame-making tools that exist (see Freedman 2018a).
Twine, for example, is a free open-source HTML-based interactive fic-
tion editor that has been widely appropriated by marginal videogame
makers (Harvey 2014), while Super Mario Maker 2 (Nintendo, 2019) for
the Nintendo Switch is a commercial videogame with a player-oriented
level editor embedded within it. Elsewhere, smaller tools made by indi-
viduals rather than large corporations, such as Adam Le Doux’s Bitsy

12  B. NICOLL AND B. KEOGH

and Lexaloffle’s Pico-8, allow for the creation and distribution of vid-
eogames within very specific technical restrictions. For the purposes of
this book, we consider this broader range of player-oriented, fringe,
and grassroots videogame-making tools as ‘game engines’, as they too
are cultural software that provide code frameworks for videogame
production.

In the existing research in this area, game engines are often described
as social entities that facilitate interdisciplinary collaboration and knowl-
edge exchange within and across team compositions. John Banks
(2013: 53), for example, describes the game engine as a ‘multiple object’
whose role in the development process is to coordinate the—oftentimes
incompatible and conflicting—knowledge boundaries of programmers,
designers, artists, and producers. Likewise, Jennifer R. Whitson (2018a)
argues that game engines and related middleware exert ‘voodoo agency’
over their users. Game engines are often ascribed anthropomorphic qual-
ities by their users—they exhibit their own biases and preferences, much
like any other member of the development team—and because of this,
argues Whitson (2018a: 2327), they can act as scapegoats for roadblocks
encountered in the development process. In this way, they function to
‘corral the negative social effects that result when one member’s con-
tribution to the game refuses to work or to fit nicely within the larger
structure, thus preserving [team] cohesion’ (Whitson 2018a: 2327).
For Banks and Whitson, game engines are complex technical and social
‘actors’ that perform distinct ‘roles’ within and across the various con-
texts they are articulated. Much of the existing research on game engines
is based on data produced at a time when proprietary game engines,
which were typically custom-made within studios and safeguarded
therein, were the dominant means of videogame production (see, for
example, O’Donnell [2014] and Banks [2013]). However, today’s com-
mercial game engines facilitate ecologies of production, consumption,
and meaning-making that far exceed the confines of the traditional studio
environment. Unity is a key barometer—indeed, catalyst—of this shift.
It is widely celebrated (and, in some contexts, disparaged) for making
videogame development much ‘easier’ than it once was (a notion prob-
lematized in Chapter 5); for providing everyone from students to studio
developers with low-cost, low barrier to entry, and standardized videog-
ame-making tools; and for fostering grassroots development scenes that
scale online, offline, and inter-regional videogame-making cultures and
communities.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  13

What Is Unity?
Unity’s origin story is something of a pastiche of the ‘rags-to-riches’
(and highly gendered) success stories often associated with tech start-
ups. ‘In the early 2000s’, writes Jon Brodkin (2013: n.p.) in an online
article on the company’s history, ‘three young programmers without
much money gathered in a basement and started coding what would
become one of the most widely used pieces of software in the videog-
ame industry’. Those three young programmers were David Helgason,
Joachim Ante, and Nicholas Francis. Ante and Francis met on a Mac
OpenGl board in May of 2002, after Ante responded to Francis’s
request for advice on a shader tool he was building for a custom engine
(Haas 2014: 4). Ante and Francis subsequently began collaborating on
said shader tool and, thereafter, a custom game engine. Helgason then
joined the project and was appointed CEO. The team then formed
the company Over the Edge Entertainment (OTEE)—now Unity
Technologies—and began hiring software engineers. Inspired by Apple’s
Final Cut Pro, OTEE’s initial plan was to create a Mac-only develop-
ment tool that could be used to create and publish interactive web-based
3D content.8 Their main competition was Adobe’s Flash—a develop-
ment tool that, while popular, supported a limited range of scripting
languages and graphics capabilities. Once Unity was in beta, OTEE
used the engine to develop and publish a videogame called GooBall
(Over the Edge Entertainment, 2005). Like the flagship titles of many
game engines, GooBall was developed to advertise Unity’s capabilities
(Haas 2014: 7–8).

Unity 1.0 was released in June of 2005. It subsequently went through
multiple software iterations and name changes before it became what
it is today (version 2019.1 at the time of writing). Its adoption rate
grew dramatically with the launch of Apple’s App Store and the ensu-
ing boom in mobile videogame development. As one of the few com-
mercial game engines optimized for iOS development available in the
mid-2000s, and a relatively cheap resource for the typically small and
independent teams seeking success on the mobile marketplace at the time,

8 Incidentally, Unity Technologies ceased support for its ‘Web Player’ in 2015, after
browsers such as Chrome began blocking Netscape Plugin Application Programming
Interface (NPAPI) plugins. Many videogames developed for and published on Unity’s Web
Player have subsequently been lost.

14  B. NICOLL AND B. KEOGH

Unity became something of an overnight success. Unity has since
expanded to support multiplatform development, as well as a suite
of other features including ad network and version control services. It
can now be used to develop a wide variety of projects, and it supports
development for an equally wide variety of platforms. In this way, Unity
can be considered a general-purpose engine, meaning that although
its default toolset is arguably geared towards the creation of particular
types of content, it is built to accommodate a range of possible project
types, design methodologies, and production workflows. Most game
engines are, by contrast, built to accommodate very specific types of
software development, and in this way, they have distinct affordances. A
videogame studio might, for example, develop a custom engine that is
specifically optimized for the development of first-person shooter vide-
ogames. Although Unity is a general-purpose engine, it still encourages
developers to create content in specific ways. For example, Unity was
initially optimized for 3D content creation, such that it was referred to
as ‘Unity3D’ for many years. On Twitter, it is still common for devel-
opers to hashtag their Unity-related tweets with #Unity3D. Although
it has since incorporated numerous tools and features for the creation
of 2D content, Unity’s underlying grain—its protocols, standards, and
affordances—still enforces something of a 3D design methodology
and epistemology. It is also important to note that Unity’s affordances
are relational,9 in that they are shaped as much by the decisions of the
company’s key stakeholders and in-house software engineers as they are
by the collective intelligence, ingenuity, and entrepreneurship of the
engine’s user base.

This relationality is especially evident in Unity’s various ‘platform’
features. Unity’s platform ecology will be explained in more detail in
the following chapter, but for now, it is important to note that Unity
encompasses not only a suite of software tools but also a (highly polit-
icized) space of affective, cultural, and technological intermediation or
‘platformization’ (Nieborg and Poell 2018). This space encompasses, for
example, the Unity Asset Store, where users can buy, sell, and/or freely
obtain various user-developed assets and plugins. Unity also has some-
thing of a ‘platform-based business model’ (see Srnicek 2016; Nieborg
and Poell 2018), which, in short, means that the majority of its users are

9 See Bucher and Helmond (2017: 235) for a critical overview of affordances and rela-
tionality in connection with social media platforms.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  15

offered a ‘free’ version of the core software in exchange for their data,
their attention (broadly defined), their loyalty (cultivated through said
attention), and their commitment to an EULA. Many Unity develop-
ers also identify as being part of a cultural scene that exists within the
engine’s platform ecology (Young 2018: 100–105). This scene includes
like-minded developers, online forums, social events, and company
‘evangelists’,10 each of whom share a common investment in the com-
munity, openness, and creativity that Unity seemingly affords. Although
aspects of this scene may be considered antagonistic in relation to
Unity’s wider platform ecology, our sense is that the ecology itself—as
a space of affective intermediation or, in Angela McRobbie’s (2016)
terms, a ‘creativity dispositif’—explicitly works to contain what may have
once been considered oppositional or countercultural videogame-making
identities, attitudes, and practices.

Although Unity is considered a general-purpose engine, and although
many developers stress that it can be customized in seemingly any direc-
tion, it is important to emphasize that, like all cultural software, Unity is
not a neutral tool. From its default editing interface to its platform-based
business model to its policy discourse of ‘democratizing game devel-
opment’, Unity imposes a particular politics of software development.
As one developer we interviewed for this book put it,

Yes, it’s possible to work in many ways in Unity, but there is a way that
they want you to work and you are pushed or encouraged to work within
that environment, within those ways, right? And that’s just the nature of
any program, any software that you’re using. Like, you write a document
in Word and there are immediately decisions made for you about, like,
what document it is, what an appropriate margin size is for a page, what a
heading should look like, and things like that. And, even though you can
modify those things, there’s definitions there that are telling you what is
acceptable and how to work within those spaces.

Of course, this is not to say that the shape and form of all cultural pro-
duction today are entirely reducible to the cultural software that support
it. For example, while it would be relatively uncontroversial to claim
that Microsoft Word has a standardizing influence on word processing

10 Unity’s ‘evangelist’ representatives immerse themselves in regional communities and
provide support for developers in the form of field engineering.

16  B. NICOLL AND B. KEOGH

workflows, page layouts, and even spelling and grammar, it would be
comparatively difficult (though not necessarily impossible) to prove
that Microsoft Word has a standardizing influence on individual writ-
ing styles. It is nonetheless clear that word processing software and the
process of writing are both grounded in what Matthew Kirschenbaum
(2016: 7) calls an inseparable materiality, however difficult that materi-
ality is to articulate (see Bogost [2006: 62] for a similar observation with
regard to game engines). ‘To know the software [of word processing]’,
writes Kirschenbaum (2016: 13), ‘is to know something of the mind of
the writer, however obliquely’. Similarly, while many of the developers
we interviewed for this book firmly believed that Unity did not have a
detectable influence on their creative output, they often (somewhat con-
tradictorily) spoke of Unity imparting an ineffable ‘look and feel’, and
expressed a keen interest in the various engines and tools used by their
colleagues and peers. Like all cultural software, Unity gives shape to spe-
cific production workflows, design methodologies, software literacies,
and modes of (self-)governance. These mediations cohere into a soft-
ware circuit that utilizes multiple techniques—technological, discursive,
and aesthetic—to draw users into its orbit. To paraphrase Kirschenbaum
(2016: 7), most videogame developers would probably agree that their
use of Unity is something that should be talked about, even if it is not
immediately clear how or why. This book takes steps towards providing a
critical vocabulary that, we hope, will encourage these conversations.

Book Outline and Context

This book draws on data from 175 semi-structured interviews with
videogame developers, students, and educators, as well as participant
observation and ethnographic fieldwork, conducted by both authors
individually in Australia throughout 2018. Of our interviewees, 79%
were men. While equal representation would be ideal, this percentage
is reflective of the gender imbalance in the Australian videogame indus-
try (GDAA 2018). The interviews were semi-structured and typically
lasted between 30 and 60 minutes. Most (but not all) interviews were
recorded, transcribed, and analysed for key themes. We conducted inter-
views with a wide range of developers, finding that the vast majority of
respondents used Unity as their primary engine. We actively sought out
interviews with users of, for example, Epic’s Unreal engine—another
key player in this space—though these users were in the minority.

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  17

Thus, while we occasionally draw on insights from interviews with
Unreal developers and users of grassroots game engines such as Twine
to make observations on game engines generally as a genre of cultural
software, this book is primarily focused on Unity as its core case study.
We also conducted ethnographic fieldwork and participant observa-
tion at a co-working space known as The Arcade, based in Melbourne’s
Southbank. Here, we were able to gain insight into the ‘messy material-
ity’ (Whitson 2018b) of videogame development, which was less appar-
ent in semi-structured interviews. Most respondents agreed for us to use
their real names in the research, though we have chosen to anonymize
quotes where appropriate. As a tertiary source, we also draw from the
experience of one author, Keogh, using Unity as a hobbyist videogame
developer and videogame development educator.

Australia is a paradigmatic case study for understanding Unity’s rise
to prominence among student, independent, and professional video-
game makers. In the early 2000s, before Unity 1.0 was released, many
of Australia’s most successful videogame studios were either acquired
by or dependent on contracts from North American companies, in part
because Australia had become something of a ‘currency haven’ in the
wake of the Global Financial Crisis (GFC) (Banks and Cunningham
2016: 129; see also Darchen 2015: 209–210). During this time,
Australian studios were turned into offshore subsidiaries and tasked with
developing ‘catalogue filler’ software for North American publishers.
As the effects of the GFC took hold in North America, many of these
Australian subsidiaries were abandoned by their now-North American
owners/investors, leading to a rapid deflation of the national industry
and a diaspora of home-grown talent (see Apperley and Golding 2015;
McCrea 2013). Out of this wreckage emerged a number of successful
Australian mobile videogame developers and independent studios. Unity
gained momentum in Australia for much the same reason that mobile
videogame development gained momentum in Australia. That is, in
the wake of the GFC, when a number of once-dominant studios went
bankrupt, and when state support for media creatives dissipated, devel-
opers formed small teams and made ‘small’ videogames using the inex-
pensive and commercially feasible videogame-making resources available
to them. According to a 2018 survey of 72 Australian videogame com-
panies, 55 were using Unity, while seven were using Unreal, and five
were using proprietary game engines (Game Developers’ Association of
Australia 2018). Internationally successful Australian mobile videogames

18  B. NICOLL AND B. KEOGH

such as Crossy Road (Hipster Whale, 2014) and, more recently, Florence
(Mountains, 2018) were developed in Unity. Unity, together with
Apple’s App Store, has reinvigorated and reconfigured the Australian vid-
eogame industry over the past decade. At the same time, Unity’s dom-
inance in Australia has meant that a whole nation’s videogame industry
has, for several years, been more-or-less beholden to a single company’s
product. Australia is both an exceptional case study for understand-
ing the mediations of Unity and a hugely relevant one as other regional
videogame industries are also emerging as somewhat autonomous from
the traditionally dominant blockbuster studios concentrated in North
America and Japan. The global videogame industry is intensely local
(Kerr 2017), and concentrating our case study on a single local industry
(albeit in a trans-local context) grounds our analysis.

We proceed in Chapter 2 by setting up the story of Unity—its
socio-historical context, its political economy, and its platform-based
business model—before considering its articulations within and across
the circuits of cultural software and the field of videogame production
more broadly. In Chapter 3, we first consider the various workflows
that have become articulated to Unity. In Chapter 4, we then look at
the engine’s underlying grain, which has a direct bearing on the design
methodologies adopted by its users and, by extension, the cultural recep-
tion of Unity-developed content. Chapter 5 then explores the various
literacies that have emerged within and around Unity, while Chapter 6
concludes by considering the governance structures associated with the
engine’s democratization dispositif—that is, the mechanisms and knowl-
edges through which potential users are enrolled into the engine’s soft-
ware ecology. A common finding across each of the circuits is that Unity
is experienced as simultaneously empowering and disempowering. Unity
provides accessible design standards for videogame developers but, in
doing so, reveals a lack of accessible design principles. Unity is viewed as
creatively enabling for non-programmers, yet many speak of the technical
know-how necessary to deviate from its ‘path of least resistance’. Unity
extracts surplus value from the informal support labour of its asset store
developers, yet it utilizes the revenue obtained from its more formalized
actor-networks to provide support for its informal user base. Unity’s
open licensing structure makes it ‘easier’ for students and independents
to create content, yet it also leads to anxieties around monopolization
and homogenization. Unity demystifies the process of development and
makes visible a wider diversity of creators and genres, yet it also conceals

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  19

the technical and economic infrastructures that underlie its user-friendly
interface. This brings us back to the duality identified in the opening
anecdote: How might we make sense of a game engine that, according
to popular discourses, both democratizes and homogenizes, that gener-
ates enthusiasm and anxiety in equal measure?

References

Adorno, Theodor, and Horkheimer, Max. 2002 (1947). Dialectic of
Enlightenment: Philosophical Fragments. Stanford: Stanford University Press.

Apperley, Thomas H., and Daniel Golding. 2015. “Australia.” In Video Games
Around the World, edited by Mark J. P. Wolf and Toru Iwatani. Cambridge:
MIT Press.

Apperely, Thomas H., Darshana Jayemanne, and Bjorn Nansen. 2016.
“Postdigital Literacies: Materiality, Mobility and the Aesthetics of
Recruitment.” In Literacy, Media and Technology: Past, Present and Future,
edited by Becky Parry, Cathy Burnett, and Guy Merchant, 203–218. New
York: Bloomsbury.

Ash, James. 2015. The Interface Envelope: Gaming, Technology, Power. New York:
Bloomsbury.

Banks, John. 2013. Co-creating Videogames. New York: Bloomsbury.
Banks, John, and Stuart Cunningham. 2016. “Creative Destruction in the

Australian Videogames Industry.” Media International Australia 160 (1):
127–139.

Berry, David M., and Michael Dieter, eds. 2015. Postdigital Aesthetics: Art,
Computation and Design. London: Palgrave Macmillan.

Bogost, Ian. 2006. Unit Operations: An Approach to Videogame Criticism.
Cambridge: MIT Press.

Bratton, Benjamin H. 2015. The Stack: On Software and Sovereignty. Cambridge:
MIT Press.

Brodkin, Jon. 2013. “How Unity3D Became a Game-Development Beast.”
Dice, June 3. https://insights.dice.com/2013/06/03/how-unity3d-
become-a-game-development-beast/.

Bucher, Taina, and Anne Helmond. 2017. “The Affordances of Social
Media Platforms.” In SAGE Handbook of Social Media, edited by Jean
Burgess, Thomas Poell, and Alice Marwick, 234–253. Los Angeles: SAGE
Publications.

Chun, Wendy Hui Kyong. 2011. Programmed Visions: Software and Memory.
Cambridge: MIT Press.

https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/

20  B. NICOLL AND B. KEOGH

Darchen, Sébastien. 2015. “‘Clusters’ or ‘Communities’? Analysing the Spatial
Agglomeration of Video Game Companies in Australia.” Urban Geography 23
(2): 202–222.

Dillet, Romain. 2018. “Unity CEO Says Half of All Games Are Built on
Unity.” Techcrunch, September 5. https://techcrunch.com/2018/09/05/
unity-ceo-says-half-of-all-games-are-built-on-unity/.

du Gay, Paul, Stuart Hall, Linda Janes, Hugh Mackay, and Keight Negus. 1997.
Doing Cultural Studies: The Story of the Sony Walkman. London: Thousand
Oaks.

Foucault, Michel. 2008. The Birth of Biopolitics: Lectures at the Collège de France,
1978–79. Basingstoke: Palgrave Macmillan.

Freedman, Eric. 2018a. “Engineering Queerness in the Game Development
Pipeline.” Game Studies 18 (3). http://gamestudies.org/1803/articles/
ericfreedman.

Freedman, Eric. 2018b. “Software.” In The Craft of Criticism: Critical Media
Studies in Practice, edited by Michael Kackman and Mary Celeste Kearney,
318–330. New York: Routledge.

Game Developers’ Association of Australia. 2018. “What Game Engines Are
Companies Using?” https://www.facebook.com/GameDevAssocAus/photos/
a.1943622552593569/2062766267345863/?type=3&theater.

Grayson, Nathan. 2018. “No, PUBG Is Not an ‘Asset Flip’.” Kotaku, 18 June.
https://kotaku.com/no-pubg-is-not-an-asset-flip-1826935848.

Grossberg, Lawrence. 1995. “Cultural Studies: What’s in a Name (One More
Time).” Taboo: The Journal of Culture and Education 1: 1–37.

Grossberg, Lawrence. 1997. Bringing It All Back Home: Essays on Cultural
Studies. Durham: Durham University Press.

Grossberg, Lawrence. 2010. Cultural Studies in the Future Tense. Durham: Duke
University Press.

Haas, John. 2014. “A History of the Unity Game Engine.” Interactive
Qualifying Project. Worcester Polytechnic Institute. https://web.wpi.edu/
Pubs/E-project/Available/E-project-030614-143124/.

Harvey, Alison. 2014. “Twine’ Revolution: Democratization, Depoliticization,
and the Queering of Game Design.” Game 3: 95–107.

Jenkins, Henry. 2006. Convergence Culture: When Old and New Media Collide.
New York: New York University Press.

Keogh, Brendan. 2019. “From Aggressively Formalised to Intensely In/
Formalised: Accounting for a Wider Range of Videogame Development
Practices.” Creative Industries Journal 12 (1): 14–33.

Kerr, Aphra. 2017. Global Games: Production, Circulation and Policy in the
Networked Era. Routledge: New York.

Kirkpatrick, Graeme. 2013. Computer Games and the Social Imaginary.
Cambridge: Polity Press.

https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/
https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/
http://gamestudies.org/1803/articles/ericfreedman
http://gamestudies.org/1803/articles/ericfreedman
https://www.facebook.com/GameDevAssocAus/photos/a.1943622552593569/2062766267345863/?type=3&theater
https://www.facebook.com/GameDevAssocAus/photos/a.1943622552593569/2062766267345863/?type=3&theater
https://kotaku.com/no-pubg-is-not-an-asset-flip-1826935848
https://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/
https://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/

1  THE UNITY GAME ENGINE AND THE CIRCUITS …  21

Kirschenbaum, Matthew G. 2016. Track Changes: A Literary History of Word
Processing. Cambridge, MA: Harvard University Press.

Kline, Stephen, Dyer-Witheford, Nick, and de Peuter, Greig. 2003. Digital Play:
The Interaction of Technology, Culture and Marketing. Montréal: McGill-
Queen’s University Press.

Lévy, Pierre. 1997. Collective Intelligence: Mankind’s Emerging World in
Cyberspace. Cambridge: Perseus Books.

Lobato, Ramon, and Julian Thomas. 2015. The Informal Media Economy.
‎Hoboken, NJ: Wiley.

Manovich, Lev. 2013. Software Takes Command. Cambridge: MIT Press.
McCrea, Christian. 2013. “Australian Video Games: The Collapse and

Reconstruction of an Industry.” Gaming Globally, edited by Nina B.
Huntsman and Ben Aslinger, 203–207. New York: Palgrave Macmillan.

McRobbie, Angela. 2016. Be Creative: Making a Living in the New Culture
Industries. Cambridge: Polity Press.

Nieborg, David B., and Shenja van der Graaf. 2008. “The Mod Industries? The
Industrial Logic of Non-market Game Production.” European Journal of
Cultural Studies 11 (2): 177–195.

Nieborg, David B., and Thomas Poell. 2018. “The Platformization of Cultural
Production: Theorizing the Contingent Cultural Commodity.” New Media &
Society 20 (11): 4275–4292.

O’Donnell, Casey. 2014. Developer’s Dilemma. Cambridge: MIT Press.
Pedercini, Paolo. 2017. “Indiepocalypse Now: MadMaxing Attention Economies

in the Age of Cultural Overproduction.” Molleindustria. http://molleindus-
tria.org/indiepocalypse/.

Qiu, Jack Linchuan, Melissa Gregg, and Kate Crawford. 2014. “Circuits of
Labour: A Labour Theory of the iPhone Era.” tripleC 12 (2): 564–581.

Srnicek, Nick. 2016. Platform Capitalism. Malden: Polity Press.
Unity. 2018. “Unity at GDC Keynote—March 19, 2018.” YouTube, March 19.

https://www.youtube.com/watch?v=cmRSkHl-Gv0.
Whitson, Jennifer R. 2018a. “Voodoo Software and Boundary Objects in Game

Development: How Developers Collaborate and Conflict with Game Engines
and Art Tools.” New Media & Society 20 (7): 2315–2332.

Whitson, Jennifer R. 2018b. “What Can We Learn From Studio Studies
Ethnographies? A ‘Messy’ Account of Game Development, Materiality,
Learning, and Expertise.” Games and Culture (OnlineFirst). https://doi.
org/10.1177/1555412018783320.

Young, Christopher J. 2018. “Game Changers: Everyday Gamemakers and the
Development of the Video Game Industry.” PhD diss., University of Toronto.

Zhao, Sumin, Emilia Djonov, and Theo van Leeuwen. 2014. “Semiotic
Technology and Practice: A Multimodal Social Semiotic Approach to
PowerPoint.” Text&Talk 34 (3): 349–375.

http://molleindustria.org/indiepocalypse/
http://molleindustria.org/indiepocalypse/
https://www.youtube.com/watch%3fv%3dcmRSkHl-Gv0
http://dx.doi.org/10.1177/1555412018783320
http://dx.doi.org/10.1177/1555412018783320

23

Abstract  This chapter argues that Unity’s ‘conditions of existence’ are
predicated on a long history of developer- and player-oriented videog-
ame-making tools, practices, and communities, and that the engine’s
business model is consonant with a broader ‘platformization of cultural
production’ in today’s media industries. It describes the emergence of
proprietary game engines in the early 1990s in terms of a broader shift
from programmer-centric development to content-centric development.
It argues that Unity builds on long-standing agitations for ‘democra-
tized’ tools in videogame development, such as those associated with
modding scenes and indie development. It then discusses Unity’s plat-
form-based business model, touching on the engine’s licensing structure;
its revenue model; its asset store; and its attempt to establish spaces of
‘affective intermediation’ in videogame culture.

Keywords  Videogame history · History of game engines ·
Unity game engine · Videogame development · Asset store ·
Platformization of cultural production

Modes of production in the videogame industry have undergone
fundamental changes over the past decade. Throughout the 1990s and
early 2000s, videogame studios would typically create bespoke devel-
opment tools from scratch, for use on internal projects. Developers
would need to secure publishing deals and software development kits

CHAPTER 2

Unity’s Socio-historical Context
and Political Economy

© The Author(s) 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6_2

https://doi.org/10.1007/978-3-030-25012-6_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25012-6_2&domain=pdf

24  B. NICOLL AND B. KEOGH

(SDKs)1 from publishers and other brokerage actors if they were
to have any hope of releasing their content on commercial videog-
ame hardware (see Kerr 2017). With a few notable exceptions, com-
panies did not share their tools (unless leasing for a fee) or openly
trade industry knowledge (O’Donnell 2014; see also Darchen 2015:
213–214 for an Australian perspective). For the most part, develop-
ment was slow, secretive, resource-intensive, and open only to those
with access—financially and institutionally—to the proprietary pipelines,
toolchains, and skill sets required to produce and publish videogame
content.

Since the early 2000s, however, several low-cost and low barrier
to entry game engines have enabled a wider diversity of creators to
make videogames. Unity is central to this transformation, but it did
not emerge in a vacuum. Its existence is indebted to a long history of
developer- and player-oriented videogame-making tools, practices,
and communities, and its business model is consonant with a broader
‘platformization of cultural production’ in today’s media industries
(see Nieborg and Poell 2018). In this chapter, we set the scene for
Unity’s ‘conditions of existence’ (Parikka 2012: 6) by looking at the
various historical circumstances that contributed to its emergence,
as well as the political economy2 of its business model and licensing
structure. Along the way, we look at the history of videogame-making
tools, both digital and non-digital; the shift from programmer-centric
development to content-centric development, which occurred in the
1990s; the concurrent rise of proprietary game engines; the long his-
tory of grassroots and countercultural videogame-making practices; and
the rise of Unity as a platform-based software ecology for videogame
production.

2 The political economic tradition in media studies is broadly focused on the following
questions: Who owns power in the media industries; how is that power consolidated and
filtered through an organization’s supply chains, conditions of labour, and revenue models;
and how do these power structures fall upon media audiences, consumers, and users?

1 SDKs are software resources that hardware manufacturers and publishers lease to vide-
ogame developers in the final stages of a project. Companies such as Nintendo, Sony, and
Apple build protocols into their platforms that render it impossible to run a game on their
hardware without the requisite SDK (see O’Donnell 2014: 200–207).

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  25

Videogame Development Before Game Engines

Game engines and other kinds of software tools have not always played
such a prominent role in videogame development. Early videogames
such as Tennis for Two (Higginbotham, 1958) were hardwired directly
onto vacuum tube analogue computers and synced to oscilloscope dis-
plays. Likewise, early arcade videogames such as Computer Space (Syzygy
Engineering, 1971) ran on hardwired integrated circuits rather than
read-only memory (ROM) storage devices. Many early videogame con-
soles and computers did not have code frameworks upon which content
could be built; instead, programmers created content from first princi-
ples. The Atari Video Computer System, for example, did not have an
operating system, meaning that programmers were ‘responsible for han-
dling every interaction on the machine’—even the console’s on-off and
reset switches, whose functions had to be written into each individual
cartridge program (Montfort and Bogost 2009: 34).

In the 1980s, various consumer-grade videogame-making tools were
developed for microcomputers such as the Apple II, the Commodore 64,
and the Atari 8-bit family. An oft-cited example is Pinball Construction
Set (PCS; BudgeCo, 1983), developed by Bill Budge and published
by Electronic Arts for the Apple II in 1983 (see Barton and Loguidice
2009). PCS consists of a drag-and-drop inventory of digital pinball
parts—flippers, bumpers, spinners, and so on—that can be assembled
into playable pinball videogames. PCS also enabled users to custom-
ize art, music, and physics for their digital pinball creations. A com-
pleted PCS build can be published on floppy disk and played on another
Apple II machine, regardless of whether that machine has the core PCS
software installed. PCS spawned a whole series of popular ‘construc-
tion set’ videogames, including Will Harvey’s Music Construction Set
(Harvey, 1984), Racing Destruction Set (Koenig, 1985), and Adventure
Construction Set (Smith, 1984), the latter of which introduced a basic
scripting tool. The proliferation of—and widespread interest in—
videogame-making tools in the 1980s was precipitated by a broader
trend of hobbyist programming on microcomputers. Regional micro-
computer scenes—wherein hobbyists wrote and exchanged their own
software programs—flourished across Europe, South America, and
Australasia in the 1980s. In these contexts, magazines such as Compute!’s
Gazette (sic) functioned as videogame-making ‘tools’ of sorts, to the
extent that they published ‘type-in programs’ (often written in BASIC)

耿游2

耿游2

耿游2

耿游2

26  B. NICOLL AND B. KEOGH

that readers could manually enter, line by line, on their home machines.
During this era, it was also common for developers to sketch design con-
cepts and graphics on paper before translating said concepts and graph-
ics into code (Stuckey et al. 2015: n.p.). There was, in essence, a much
smaller division between those who played videogames and those who
made them, and a much more ‘informal’ landscape of videogame devel-
opment as a result (Keogh 2019).

It would also be remiss for us not to mention the long history of
non-digital game-making tools, practices, and communities. For exam-
ple, tabletop ‘war games’ of the 1970s often combined rule-based sys-
tems with player-oriented scenario editors. Like videogame engines,
these ‘war engines’ (Lowood 2016a) emerged from a need to stream-
line the increasingly content-heavy nature of (non-digital) game devel-
opment. War engines enabled players to generate their own combat
scenarios rather than simply play scenarios created by game designers.
While Henry Lowood (2016a: 103) suggests that there ‘are indeed
meaningful similarities’ between war engines and videogame engines,
he stresses that ‘this interpretative strategy might be a stretch’, inso-
far as the war engine’s underlying systems are transparent and mod-
ular, while the videogame engine’s ‘secrets’ tend to be black-boxed or
closed source (Lowood 2016a: 103). There are nonetheless important
continuities between tabletop game engines and videogame engines.
Namely, Lowood (2016a: 101–102) identifies something of an enduring
‘imaginary’ in game development that has persisted since the era of war
engines: the fantasy of a game-making tool that, in the vein of a universal
Turing machine (or, perhaps more accurately, in the popular and argu-
ably incorrect reception of the idea of a universal Turing machine [see
Sack 2019: 54–55]), can do anything and everything (cf. Banks 2013:
51–53).3 As we will see in the following chapters, Unity’s generalist
nature places it squarely within this imaginary.

Videogame engines were ‘driven into existence’ (Lowood 2016a:
103) for similar reasons to tabletop engines. As videogames became
increasingly content-heavy in the 1990s—that is as videogame devel-
opment became increasingly dependent on the labour of designers and
artists rather than programmers—studios began to create tools for the
purposes of coordinating (and patenting) the various part(icipant)s

3 In the context of war games, this imaginary expressed itself in the desire for a war
engine ‘with unlimited scenario generation powers’ (Lowood 2016a: 102).

耿游2

耿游2

耿游2

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  27

involved in the development pipeline. This history constitutes what we
call a developer-oriented lineage of proprietary and commercial game
engines.

Developer-Oriented Game Engines:
From Proprietary to Commercial

The term ‘game engine’ first emerged in 1993 to describe a specific class
of software objects (Lowood 2016b: 203; Bogost 2006: 60). As men-
tioned above, game engines emerged partly in response to the increas-
ingly content-heavy nature of professional videogame development
in the mid- to late 1990s. ‘Content’ here refers to a videogame’s rep-
resentational elements—assets, animations, audio, narrative, writing,
level design, and so on—rather than its code, systems, and procedures.
Prior to the emergence of game engines, programmers and software
engineers were understood to be the most central—if not exclusive—
labourers associated with videogame development; they wrote code,
designed systems, and created (often rudimentary) art and music.4 In the
1990s, the proliferation of dedicated videogame hardware and a grow-
ing consumer appetite for ‘good graphics’ and intellectually stimulating
‘gameplay’ (Kirkpatrick 2015: 60–61) meant that programmers were
spending more time on narrative, design, and art than they had in the
past. One of our respondents described this shift in terms of a transition
from programmer-centric development to content-centric development
(cf. Freedman 2018: n.p.). In content-centric development, the bulk of
development is focused on design and art rather than programming. It
therefore requires a whole composition of different developers with dif-
ferent skill sets—not only programmers and software engineers but also
designers, artists, writers, composers, producers, and other actors—to
collaborate and contribute to the development process.

4 This historical generalization risks erasing other types of labour associated with vide-
ogame development. We could, for example, consider the labour of Roberta Williams,
who, in 1979, designed the graphic adventure videogame Mystery House (Williams,
1980). According to Laine Nooney (2013: n.p.), Williams ‘was not a programmer; she
was a housewife and mother of two’, and her ‘design contained no code, no instruction
sets, no sense of how the game she wrote would function on a computer’. Nooney makes
the important point that videogame history struggles to ‘make sense’ of figures such as
Roberta Williams for this reason.

28  B. NICOLL AND B. KEOGH

In content-centric development, programmers are no longer respon-
sible for art and design, but rather for creating the tools that designers
and artists can use to author and edit content.5 Content-centric devel-
opment therefore requires pipelines that make it easier to manage each
part(icipant) in the development process. Pipelines consist of com-
pany-specific development tools and techniques through which con-
tent is not only created but also continually iterated upon. Being able
to iterate on content that has already been created is made easier with
tools that are themselves iterative—that is, tools that can be customized
to suit a variety of different (and constantly evolving) videogame pro-
jects and disciplinary roles. Given that programmers were (and still are,
in many studios) responsible for creating and maintaining tool pipe-
lines, it is often the case that these tools can implicitly delegate power
to programmers and software engineers rather than designers and artists
(see Whitson 2018a).

In the 1990s and 2000s, many videogame studios created proprietary
toolsets (that is, game engines) to streamline and patent their in-house
content-centric development processes. These proprietary engines were
not singular objects but rather amorphous collections (or ‘libraries’) of
tools that could be uniquely tailored to company-specific projects, work-
flows, and player-oriented ‘modding’ practices (see Banks 2013: 45). In
Eric Freedman’s (2018: n.p.) words, proprietary engines were developed
not only to ‘realize greater efficiencies in the game development pipe-
line (marrying code and design)’ but, crucially, ‘to mitigate the [com-
pany’s] dependency on the middleware of other software companies’.
The prototypical example here is the Doom engine (also known as id
Tech 1), created by North American company id Software in 1993 (see
Lowood 2016b). id Software used the Doom engine to develop Doom
(id Software, 1993) and its sequel. Sometimes, companies such as id
Software would license their proprietary engines to other companies or
make them partially accessible for public use. Content produced or pub-
lished using the Doom engine would, in these instances, be considered
a ‘proprietary extension’ of id Software’s patented engine technology

5 Eric Freedman (2018: n.p.) goes so far as to argue that ‘[t]his industrial division also
shaped the field of game studies, placing more focused attention on visual analysis, ignoring
certain material relations to study narrative, genre, seriality and other literary and cinematic
conceits’.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  29

(see Nieborg and van der Graaf 2008).6 Shortly after they were intro-
duced in studio environments, game engines entered the public imag-
ination. Videogames were often promoted on the basis that they were
‘powered by’ particular engines—engines that players, critics, and mag-
azines came to recognize and associate with, for example, good graphics
and stable frame rates (see Chapter 5). Moreover, by generating enthusi-
asm for their engines, companies such as id Software were able to adver-
tise their tools to prospective licensees.

The patenting (and occasional leasing) of company-specific game
engines throughout the 1990s and early 2000s was one among several
factors that contributed to a culture of protectionism and secrecy among
videogame developers (O’Donnell 2014). Studios would need to hire
multiple software engineers to create, maintain, and iterate upon their
tools, often over a period of several years. As one of our respondents
put it, ‘code goes stale’, even when written in-house. Software tools—
regardless of whether they are custom-made within studios or commer-
cially available for public use—need to be constantly updated to comply
with the latest hardware and software standards. Unity, for example, is a
product of the labour of thousands of software engineers and everyday
users, who continuously update, patch, and contribute resources to the
engine. A comparable amount of labour, capital, and resources would
be required to build a custom engine: personnel to create and maintain
the engine, time (often years) to develop the engine itself, as well as an
ongoing allocation of resources to engine upkeep. This is one reason
(among many) why proprietary engines have historically been treated
as intellectual property and safeguarded within studios. This safeguard-
ing of industry tools created a culture of secrecy and protectionism
that, according to Casey O’Donnell (2014: 273), was ‘both top-down—
non-disclosure agreements, closed licensing structures, proprietary hard-
ware and software—and bottom-up—“my idea is super secret and super
awesome,” […] “if I talk about this, someone is going to steal it”’.

Although some of our respondents reminisced positively about their
work with and on proprietary engines, most associated them with an
industry environment that was detrimental to interdisciplinary collabo-
ration. One software engineer, who had worked as an engine developer

6 id Software tend to open source their engines after several years, meaning that content
produced on their engines after the transition to open source may no longer be considered
a proprietary extension.

30  B. NICOLL AND B. KEOGH

at several Australian videogame and software companies throughout the
2000s, remarked that he ‘cherished’ his time working on proprietary
engines, because he was able to acquire a foundational knowledge of var-
ious engine technologies. Yet, even he acknowledged that most people
involved in videogame development were put at a significant disadvan-
tage by proprietary engines because, as he put it, ‘a lot of people had
that experience where there was a mysterious engine maker that just said,
“this is how it is, this is what you’ve got, deal with it”’. The situation
was even more challenging for developers who did not work in studio
spaces. Independent developers, for example, would need to create tools
from scratch or rely on restricted public access to proprietary engines.
Freelance programmers and artists would need to learn and relearn com-
pany-specific tools as they moved between jobs. Students learned design
skills by using the player-oriented level editors and modding toolkits
available to them, rather than the tools actually used in industry. In his
2014 book Developer’s Dilemma, O’Donnell (2014) suggests that devel-
opers can alleviate these problems by embracing the open sharing of
design standards, tools, and practices—to, in a word, ‘democratize’ vide-
ogame development. Unity comes close to facilitating such a movement,
but it does so on the basis of its quasi-monopolistic status.

Opaque publishing procedures, hierarchical organizational struc-
tures, and precarious forms of employment remain ever-present in many
(though not all)7 videogame studios, yet commercial game engines such
as Unity have arguably simplified and demystified the process of devel-
oping multiplatform videogame content. Where once videogame devel-
opment was characterized by ‘waterfall’ management techniques and
hierarchical production pipelines, commercial game engines have con-
tributed to what Whitson (2018b: 9) calls an ‘increasingly heterogene-
ous’ landscape of development: ‘[t]eams are often smaller, organized
in a “flat” rather than hierarchical manner, and multitask rather than
occupy the discrete roles depicted in textbook organizational charts’.
This corresponds to a shift from what some developers call ‘waterfall’
to ‘agile’ management processes. In waterfall management, the various
steps involved in a development process are itemized in design docu-
ments, assigned to various team members, and translated into milestones.

7 Kristine Jørgensen (2017: 15), for example, discusses a Norwegian studio that adopts a
decentralized mode of governance and explicitly ‘restricts extended use of crunch time and
other unethical activities’.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  31

Agile management is, according to Kristine Jørgensen (2017: 11), a
more ‘flexible and dynamic method’ by contrast, one ‘that focuses on
iterative work with frequent builds, thus stressing the importance of hav-
ing functional versions of the software over detailed documentation of
planned functionality’. As will be discussed in Chapter 4, rapid iteration
and prototyping are cornerstones of Unity’s editing interface.

Today, most developers opt to use commercial engines such as Unity
or Unreal as opposed to building an engine from scratch or obtain-
ing a licence to use a proprietary engine. However, there still exists an
incentive for multinational videogame companies such as Rockstar and
Electronic Arts to develop proprietary engines. In our research, we heard
anecdotes about how ‘triple-a’ or blockbuster studios often use commer-
cial engines such as Unity to prototype ideas, before switching to propri-
etary tools for the final project. Triple-a studios tend to have the budgets
to justify developing custom tools, and it makes legal and economic
sense for them to invest in internal research and development rather than
renting services and technologies from competitors. Furthermore, tri-
ple-a companies are often creating ‘high performance’ videogames with
specialized content requirements—they are working at the ‘bleeding
edge’ of software development—meaning that general-purpose engines
may not be considered performant enough for their purposes. The chal-
lenge for a commercial game engine such as Unity is therefore to strike
a balance between accessibility and performativity. Commercial engines
need to be general-purpose enough to attract developers of all skill lev-
els and disciplinary backgrounds, yet also performant enough to attract
medium-sized studios, developers of mobile videogames, and perhaps
even triple-a companies, who promise significant returns on royalties as
well as increased visibility in culture.

Player-Oriented Game Engines and Grassroots
Videogame-Making Practices

Just as game engines have an important lineage in the history of devel-
oper-oriented production processes, they have an equally important
(and oftentimes overlapping) lineage in the history of grassroots vid-
eogame-making tools, practices, and communities. Grassroots vide-
ogame-making practices have always existed alongside—and are even
synonymous with—the development of videogames as a medium.

32  B. NICOLL AND B. KEOGH

Early videogames such as Tennis for Two and Spacewar! (Russel, 1962)
were products of a ‘hacker’ culture that, while gendered and exclu-
sionary, established the idea that computers could be used for playful,
experimental, and even countercultural purposes (Turkle 2005; see also
Dyer-Witheford and de Peuter 2009: 10). Tennis for Two and Spacewar!
were effectively ‘modifications’ of military technologies explicitly devel-
oped for purposes related to, for example, nuclear physics. Likewise,
computer games developed by hobbyists in the 1980s were, according
to Graeme Kirkpatrick (2013: 65), largely responsible for ‘naturalizing’
early home computer interfaces—interfaces that were not optimized
for playing videogames but rather for running (oftentimes deeply unin-
tuitive) productivity applications (see also Swalwell 2012). In many
regions, computer and console videogames were pirated, cloned, or
creatively remixed for local audiences (see Gazzard 2014; Švelch 2018;
Nicoll 2019), long before the widespread adoption of modding tool-
kits. Videogames have always been subject to (even shaped by) regional,
transnational, and local articulations of player-oriented consumption and
appropriation, including ‘paratextual’ activities such as fan art and unof-
ficial translations (Ng 2009). As a medium, videogames are a product
of an ongoing exchange between informal and formal processes of pro-
duction and consumption, including hacking, pirating, remixing, and
hobbyist programming.

Modding is an important and widely discussed player-oriented vid-
eogame-making practice with a long history, albeit one that the indus-
try has frequently sought to co-opt as a desirable commercial activity.
Modding usually refers to the process of using tools to modify an exist-
ing videogame by, for example, adding characters, content, or features
not present in the original. Modding can be an informal practice not
envisioned by developers, or a practice actively encouraged by develop-
ers through the availability of player-oriented level editors and toolkits.
A famous example is Counter-Strike (Valve, 1999), a 1999 modification
of Valve’s first-person shooter, Half-Life (Valve, 1998). Both Half-Life
and Counter-Strike were built using Valve’s Goldsource engine, which
was itself a heavily modified version of id Software’s open-source Quake
engine. Valve released Goldsource’s level editor for public use, which led
to the emergence of many fan-made Half-Life ‘mods’, the most success-
ful of which was Counter-Strike. Counter-Strike was so popular that its
intellectual property was (re)acquired by Valve—as were the modders
who created it—and published as an official Valve game in 2000.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  33

The absorption of modding practices into commercial
videogame-making is not a fringe phenomenon, but a significant aspect
of the videogame industry. Many of the most commercially successful
videogame franchises and genres from the past decade began their lives
as mods. The multiplayer online battle arena (MOBA) genre, for exam-
ple, began life as a player-made mod of Blizzard’s Warcraft III: Reign
of Chaos (Blizzard, 2002). The battle royale genre, which exploded in
popularity alongside Fortnite (Epic Games, 2017), originated with
PlayerUnknown’s mod of ARMA 3 (Bohemia Interactive, 2013) and
the subsequent stand-alone PlayerUnknown’s Battleground (PUBG
Corporation, 2017). It is worth emphasizing, however, that most play-
er-oriented level editors do not provide access to an engine’s underlying
source code or even an engine’s full suite of tools. In fact, it is relatively
uncommon for developers to open any part of their engines for pub-
lic consumption (see van der Graaf 2018: 14). Modding toolkits were
nevertheless the primary means through which hobbyists could access
otherwise-proprietary videogame-making resources in the 1990s and
2000s.

Player-oriented videogame-making practices grew in popularity along-
side a broader enthusiasm for what Henry Jenkins (2006) calls ‘cultural
convergence’ in the 2000s. In the wake of the dot-com crash in the
early 2000s, many media organizations turned to business models that
embraced user participation, produsage, and the ‘platformization of cul-
tural production’ (Nieborg and Poell 2018). For Jenkins, this shift was
associated with a blurring of producer and consumer roles, such that
everyday users were more empowered to create, edit, share, and remix
content. In Jenkins’s (2006: 18) account, this process was fundamen-
tally democratic, because it implied that everyday users could wrest
power from media companies and ‘bring the flow of media more fully
under their control’. However, since that time, cultural convergence has
been assimilated into the underlying production logics of platform com-
panies, who actively encourage user participation as part of their core
business models. This is especially evident in the videogame industry
where, since the early 2000s, companies such as Sony and Nintendo have
actively promoted user participation through ‘flagship’ videogames such
as LittleBigPlanet (Media Molecule, 2008) and Super Mario Maker 2
(Nintendo, 2019) (see Sotamaa 2010).

These shifts were also concurrent with the emergence and wide-
spread adoption of commercial videogame-making tools in the 2000s

34  B. NICOLL AND B. KEOGH

and early 2010s. Adobe’s Flash, for example, was not explicitly created
with videogame development in mind, but was nevertheless adopted
by independents, hobbyists, and students as a videogame-making tool.
Tools such as Flash, GameMaker, RPG Maker, and Twine supported
(and continue to support) vastly different developer communities, but
they can be identified as part of a broader movement in and around the
2000s towards more accessible and equitable ways of making and play-
ing videogames. Throughout this period, a number of fringe develop-
ers and communities aggravated for change in the videogame industry
through blog posts, community events, manifestos, and books (see, e.g.,
Anthropy 2012). The ‘indie’ movement, which also gained traction in
the late 2000s, carried a similar—if somewhat less countercultural—
promise. The indie ethos is notoriously difficult to pin down (see Lipkin
2013), but the general idea is to develop videogames on one’s own cre-
ative and financial terms, rather than those dictated by studios, publish-
ers, and hardware manufacturers. Many indie developers opt for a life of
precariousness and uncertainty in pursuit of the ‘dream’ of creative and
financial independence.

Each of the above historical developments—modding, cultural con-
vergence and the platformization of cultural production, the indie
ethos, and the ongoing fight for low-cost and low barrier to entry vid-
eogame-making tools and resources—created an ‘opportunity space’ for
Unity to emerge and establish an identity for itself. Unity capitalizes on
the countercultural spirit underlying these various movements and stra-
tegically positions itself at the intersection of corporate, grassroots, for-
mal, and informal videogame-making practices. It can be viewed as an
appeal to long-standing fantasies of a game engine that can ‘do anything
and everything’, and a response to the history, culture, and mythos of
grassroots videogame-making practices. In 2014, John Riccitiello,
ex-CEO of Electronic Arts, took over from David Helgason as the CEO
of Unity Technologies. In a blog post, Helgason (2014: n.p.), Unity
Technologies’s former CEO, wrote that Riccitiello is ‘the right person to
help guide the company to the mission that we set out for ourselves over
a decade ago: democratize game development!’. Although it is doubtful
that Unity Technologies’s mission statement has always been to democ-
ratize videogame development, it is clear that the company has since
adopted a ‘discourse of democratization’ as its guiding philosophy, and
that this discourse has discovered profound resonances across formal,
informal, and interregional videogame-making communities.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  35

However, if Unity has contributed to a more democratized landscape
of videogame development—already a contentious and complicated
claim, and one that will be explored in more detail in Chapter 6—then
it has done so not solely on its own laurels, but rather by building on
a long history of grassroots videogame-making practices, tools, and
communities. Moreover, Unity users have played an important role in
developing the engine into what it is today. Users have, for example,
developed thousands of assets and plugins for the Unity Asset Store,
many of which have since been absorbed into the engine’s default tool-
set. Users have also volunteered knowledge, advice, and tutorials about
Unity on community forums and blogs—knowledge that, moreover,
was lacking in official documentation in the engine’s early years (Haas
2014: 23)—creating a pool of collective intelligence that our respond-
ents often linked to the engine’s supposedly democratizing effects.
Likewise, users have shared data with Unity Technologies—knowingly
or otherwise—which has enabled the company to rapidly scale up and
optimize its services. Media historians have long noted that narratives of
technological development are often conceptualized through what Lisa
Gitelman (2006: 61) terms a ‘production/consumption dichotomy’
that, as in Unity’s origin-story, place a heavy emphasis on the (very often
male) figures responsible for ‘inventing’ and ‘pioneering’ the technology
in question, while sidelining (and coding as feminine) narratives of media
consumption, practice, and appropriation. An argument developed in
Chapter 6 is that Unity users do not give themselves enough credit when
it comes to their role in making the tools of videogame development
more accessible and, indeed, democratic.

Unity’s Platform Ecology

One of Unity’s most defining features is its ‘platform-based’ business
model. According to Riccitiello (in Takahashi 2018: n.p.), Unity is
‘responsible for more than half’ of all videogames published on com-
mercial platforms and, as of September 2018, is currently being used by
studios in every country except the Vatican, South Sudan, and North
Korea. In other words, Unity has established powerful ‘network effects’
in the global videogame-making ecology—it has territorialized interre-
gional videogame communities, interpellating and erasing regionally
specific videogame-making identities and practices in the process (Vogel
2017)—and it has done so largely on the basis of its platform-based

36  B. NICOLL AND B. KEOGH

business model. In Platform Capitalism, Nick Srnicek (2016) observes
that platform companies such as Google and Facebook seek to gener-
ate network effects by creating powerful incentives for users to sign up
to their platforms. They often do this by providing an (ostensibly) free
service or tool, such as a social media account or an application program
interface (API), as well as by enabling various actors (users, advertisers,
bots, developers, and so on) to interact on the platform in ways that are
(ostensibly) mutually beneficial. Platforms cross-subsidize the costs asso-
ciated with maintaining these free services and tools by raising prices on
other elements of their businesses (such as advertising) or by soliciting
welfare support from venture capital investors. Once in a monopoly posi-
tion, platforms can then expand their data collection on users—data that,
once refined, can be used to generate further revenue and attract further
investment. The platform economy is thus characterized by what David
Nieborg and Thomas Poell (2018: 4282) call ‘strong winner-takes-all
effects’ or monopoly tendencies. Once a particular platform establishes
network effects in its area—whether that be social media, transport,
e-commerce, or cultural production—it becomes very difficult to dis-
lodge that platform. Many of the terms used to describe platforms—such
as infrastructures, intermediaries, openness, and, indeed, the platform
metaphor itself—are decidedly value-neutral, and they obscure the fact
that platforms are political entities that regularly flout their ethical, social,
and economic responsibilities (Gillespie 2017; Tkacz 2014).8

Unity makes use of multiple platform-based business techniques, the
first of which is its licensing structure. Unity Technologies offers multi-
ple licences for its software. The ‘Personal’ licence provides ‘free’ access to
the core engine software, while the ‘Plus’ and ‘Pro’ versions (USD$25/
month and USD$125/month, respectively, at the time of writing) pro-
vide additional services, such as access to technical support and analyt-
ics. It is important to note, however, that the Personal version of Unity
is only free insofar as no money is exchanged when users first download
it. Users pay for Unity with their data, their commitment to an end-user

8 As this book was going to print, news broke of a sexual harassment lawsuit filed against
Riccitiello and other Unity Technologies management by one of the company’s former
senior directors. The complainant ‘detailed that her time with the company was fraught
with inappropriate comments from male management towards women’ (Lanier 2019). This
instance provides a crucial reminder that so-called platforms are not detached from the
broader social and political issues at stake in the software and videogame industries.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  37

licence agreement (EULA), and their contribution to the engine’s network
effects. Most of our respondents—including medium-sized studios—used
the Personal version of Unity. At present, the Personal licence has three key
stipulations, which are enforced through the EULA. The first stipulation
is that a percentage of royalties on Unity-developed projects are payable
to Unity Technologies if the project surpasses an annual revenue thresh-
old of USD$100,000. However, very few projects developed under the
Personal licence ever surpass this threshold. To this end, the second key
stipulation is that all users must agree to share data with Unity. Unity col-
lects data within its actual editing interface (so that it can perform analytics
on its own software), as well as data on where and how Unity-developed
products are distributed and purchased once published (so that the com-
pany can gain insight into broader market dynamics). The third key stipu-
lation—unique to the Personal licence—is that a Unity ‘splash screen’ must
feature in the opening credits of a Personal licence-developed product.
The Plus licence increases the royalties threshold to USD$200,000, while
the Pro licence places no limits on annual earnings. There is also a sepa-
rate licence for developers using Unity to create and publish gambling soft-
ware.9 Each of the above stipulations is subject to change at any moment
and probably will change by the time this book is published.

None of our respondents—even those working on potentially lucra-
tive Unity-developed projects—had been directly approached by Unity
Technologies regarding their use of the Personal licence. Likewise, most
respondents—even those working at medium-sized studios—were either
very unclear on, or had not considered, the ramifications of exceeding
Unity’s $100,000 USD income threshold for videogames published on
the Personal licence. They also tended to be unclear on how that income
threshold would be enforced or monitored, or whether they had any
responsibility to establish a dialogue with Unity Technologies prior to
launching their videogames. One team explained that they had ‘never
had an interaction with a human being from Unity’ and that there was
no ‘vetting process’ following the release of their first Unity-developed

9 In many countries, developers of gambling software are required by law to submit their
source code to a government regulator. Unity therefore requires that developers of gam-
bling software purchase Unity’s underlying source code and use a ‘frozen’ version of the
engine to develop their software. Although the gambling licence generates revenue for
Unity Technologies, our contacts were careful to stress that it is not a key growth area for
the company.

38  B. NICOLL AND B. KEOGH

videogame, which had been developed using a Personal licence. One
developer from this team postulated that merely ‘imagining’ the rami-
fications of breaking Unity’s contractual obligations ‘is the panopticon
that keeps you in line’. Likewise, some students expressed confusion on
Unity Technologies’s policy—or lack thereof—for creators who, like
them, were earning money from ‘pay what you want’ donations. It is
worth noting, however, that while several respondents were unclear on
their contractual obligations, none had been audited. For this reason,
most developers spoke in very positive terms about Unity Technologies’s
‘hands-off’ approach to licensing—that is, the way in which the com-
pany offers its core toolset for free, yet appears to ask very little in return,
thus seeming to uphold its alleged commitment to ‘democratizing game
development’.10 When we prompted one developer about how recent
changes in Unity’s licensing agreement would impact the impending
launch of his videogame, he said: ‘I don’t know. I tried figuring it out
and then I just gave up and that seems to be working the best for me.
To just not think about it’. Given that few respondents expressed nega-
tive sentiments towards Unity, and none had experienced adverse ramifi-
cations for not fulfilling their contractual obligations, it seems plausible
to suggest that Unity Technologies has deliberately sought to establish
a platform ecology wherein users can feel completely undeterred from
developing and publishing Unity games, ‘to just not think about it’.

To this extent, the bulk of Unity Technologies’ revenue comes not
from royalties recouped from published content or licensees, but rather
from the company’s ad network and version control services, as well as
venture capital welfare. Much like other platform companies, venture
capital has enabled Unity Technologies to rapidly scale up and monop-
olize its network effects. However, according to informal interviews
we conducted with Unity representatives, venture capital is not con-
sidered a long-term revenue solution for the company. Instead, Unity
Technologies is investing heavily in its ad network services, otherwise
known as ‘Unity Ads’. An ad network acts as a broker that connects

10 Unity’s ‘hands-off’ approach is not applied universally—one noteworthy case is the
Unity-developed mobile videogame Pokemon Go (Niantic, 2016), which, when it was first
launched, featured a Unity splash screen, suggesting that its developers had developed
and published the videogame using the Personal licence. Yet, within days of Pokemon Go’s
release, the splash screen was removed, suggesting that its developers promptly switched to
a different licensing model.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  39

websites and apps that want to host advertisements with large databases
of advertisers and advertisements. Ad networks are particularly useful for
developers of ‘free’ mobile videogames. These free mobile videogames
often recoup revenue through in-game advertisements and in-app pur-
chases. Developers of these videogames can use Unity Ads to integrate
ads natively in their published content. In this arrangement, free mobile
videogames—and their developers—are ‘brokers’ that connect adver-
tisers with eyeballs. Unity Ads provides and enables the underlying ad
network, taking a cut from each individual ‘transaction’ that takes place.
Unity Ads is clearly a key element of Unity Technologies’s current reve-
nue structure, albeit one that is somewhat beyond the scope of this book
and its analysis.

Unity’s Asset Store also falls within the remit of the engine’s platform
ecology. Much like Apple’s App Store, Unity’s Asset Store allows users
to buy, sell, and/or freely obtain various user-developed (sometimes
referred to as ‘prefabricated’) assets and plugins. An example of a plugin
is a ‘shader’ tool, which determines how images are rendered in Unity-
developed content. In the past, developers would need to write custom
shaders or make do with an engine’s default shaders. Through the Asset
Store, users can create, share, and obtain any number of user-devel-
oped shader plugins, such as Shader Forge and Shader Amplify, many of
which are free or sold for a one-off fee. These plugins—and others like
them—hook into Unity’s editing interface as drag-and-drop tools and
custom control panels. When users purchase or obtain an asset or plugin
from the Asset Store, they are also granted a licence to use that asset or
plugin in published content. Any user can create an asset or plugin and
provide it on the Asset Store,11 though Unity Technologies takes a cut
from sales. Asset Store developers must also agree to a condition stat-
ing that they cannot request further acknowledgement or compensation
for their asset or plugin after setting an initial one-off fee. For this rea-
son, most of our respondents did not feel the need to provide formal

11 Assets and plugins for Unity can also be distributed between users externally from
the Asset Store, and are often made available on a developer’s own website or alternative
hosting platforms such as Git or Itch.io. The Asset Store remains the primary location to
distribute and source assets and plugins due to its convenient availability within Unity’s
editor and the assurance that assets available on the Asset Store are certified to work with
supported Unity versions, whereas a file uploaded to a blog might not have been tested on
newer versions of Unity.

http://Itch.io

40  B. NICOLL AND B. KEOGH

acknowledgement for the user-developed assets and plugins they were
using in their development practices, beyond any initial compensation.12

Freelance Asset Store developers perform a labour role quite unique
to software culture. Several of our respondents had considered becom-
ing full-time or freelance Asset Store developers, prior to becoming
professional videogame developers. There is a strong incentive among
Asset Store developers to provide one’s plugins or assets for free or for
a tokenistic fee. This is driven by something of an open-source mentality
and a desire to ‘give back’ to the community. Many of the more success-
ful user-developed assets and plugins have been acquired by Unity and
incorporated into the engine’s default toolset. Once a particular asset or
plugin becomes popular, as one respondent explained, ‘there’s a sense
of anticipation […] where everyone’s a bit like, “oh, I really want sup-
port for this thing, but if I wait like a month, I’ll get it properly in the
engine”’. As flagged in the introduction, Unity’s core affordances are,
in this sense, relational; they are shaped as much by the decisions of the
company’s key stakeholders and in-house software engineers as they are
by Asset Store developers and other actors. In the words of one respond-
ent, being an Asset Store developer means continuously providing ‘sup-
port labour’ for one’s assets and plugins, in that Asset Store developers
‘make their money once, but then they’re forced to do a ton of work
with every Unity update because Unity keeps breaking things. It’s like
never-ending work for the plugin maker […] so eventually they aban-
don their plugins’. Our respondent compared this situation to a ‘Silicon
Valley startup model’ wherein many Asset Store developers commit to
providing unpaid support labour for their assets and plugins in the hope
that Unity will eventually buy them out.

One of the effects of ‘platform capitalism’ (Srnicek 2016) and the
‘platformization of cultural production’ (Nieborg and Poell 2018) is
that users are—knowingly or otherwise—deeply susceptible to software

12 An interesting exception was the director of a Melbourne-based independent studio,
who explained that his studio kept records of the various user-developed plugins they had
downloaded, in addition to scripts downloaded from programmers’ blogs. Whenever his
team implements a user-developed plugin or script, they leave a reminder in their code.
Once they are approaching launch, they will trawl through the code, contact plugin devel-
opers individually, and ask whether those developers require any further acknowledgement
or compensation. He explained that, in addition to being ‘good practice’, this is also a
means by which to keep track of any user-developed plugins and scripts that become unsta-
ble or, at worst, obsolete as a result of Unity’s software updates.

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  41

updates, platform policy updates, and interface adjustments. Unity is
no exception; its frequent software updates can present complications
not only for Asset Store developers but also videogame developers,
students, and educators. Unity Technologies frequently updates their
core engine software with new features or bug fixes, but these updates
can create various instabilities in projects developed on older builds of
Unity. To borrow Whitson’s (2018a) terminology, many interviewees
described Unity updates as moments when the engine exhibited weird,
recalcitrant, or voodoo qualities, as if updating may open something of
a Pandora’s box. As discussed above, given that many respondents were
quite reliant on user-developed plugins, they described purposefully not
updating Unity unless they had performed significant testing prior to
updating. At Melbourne-based videogame studio League of Geeks, stu-
dio director Trent Kusters explained that whenever his studio plans to
adopt a new Unity version, a software engineer will first quarantine the
videogame’s current build on a separate machine to see what breaks.13
Following this quarantine process, the studio then utilizes their in-house
expertise as well as Asset Store resources to develop custom solutions
and workarounds. However, as Trent explained, this approach can carry
the risk of creating a ‘Frankenstein’ engine that may become unstable
in unforeseen ways. Trent’s biggest fear—which was shared by several
respondents—was encountering a critical issue shortly before the launch
of a new videogame. ‘Then’, he explained, ‘if you don’t have [the Plus
or Pro license], if you don’t have source code access, you’re just like
another pleb in the support forums, being like, “hi, please, we’re ship-
ping in two weeks!”’. Students and educators were impacted by Unity
updates in similar ways. Frequent Unity updates necessitate frequent
curriculum updates, as well as updates to university computers. Despite
these risks and complications, most respondents were nevertheless con-
tent with using Unity, as the alternatives—developing a custom engine,

13 It is also worth noting that Unity developers cannot take a specific fix from a new
update and implement that fix in an older build of Unity, because that would require access
to the engine’s underlying source code. League of Geeks also explained that, as a studio,
they collectively decided not to download plugins from the Asset Store unless those plugins
came with source code access. The reason for this is that if a plugin becomes unstable, the
studio’s software engineer can make the necessary fixes without having to rely upon the
plugin creator to provide support.

42  B. NICOLL AND B. KEOGH

paying for a licence, or switching to a different engine ecosystem—were,
on the whole and for different reasons, not considered viable options.

Through its platform ecology, Unity aims to support and culti-
vate what Orlando Guevara-Villalobos (2011: 2) calls ‘communitarian
practices’—practices once associated with grassroots videogame-making
communities—that developers associate with openness, care, commu-
nity, collaboration, and creativity (cf. Parker and Jenson 2017). Many
respondents spoke of the various (user-created) online resources availa-
ble to Unity developers, such as forums, blogs, social media groups, live
streams, and video guides. ‘The invaluable thing about Unity’, as vide-
ogame developer and educator Cherie Davidson put it, ‘isn’t so much
the engine itself as how accessible it is to just Google, “how do I do ‘x’
with Unity”, and there will be an answer for you’. Some Unity devel-
opers even post their scripts online and invite other developers to use
and/or iterate upon them. There are also Unity events—such as the
annual ‘Unite’ conferences, held in Los Angeles, Hyderabad, Berlin,
Melbourne, and Singapore—where company representatives, develop-
ers, independents, and students come together to network, share knowl-
edge, and discuss the latest Unity features. Cherie interpreted Unite
‘as Unity’s way of being like, “We are your friends. Talk to us. We’re
ready to have a dialogue and see what the engine can do for you”’. By
actively promoting the formation of what she termed a ‘Unity family’,
Unity’s platform ecology is identified not only as a software environment
or business model but also a space of affective intermediation where, to
borrow Felan Parker and Jennifer Jenson’s (2017: 877) words, ‘smaller,
less business-minded game makers [can] congregate, commiserate, and
celebrate creativity’. Unity’s ability to establish a relationship of trust
with its community—such that the Unity user base not only embraces
the open sharing of knowledge but also expects its collective intelligence
to be absorbed into the engine’s default toolset—is a far cry from the
closed proprietary structures and hierarchical business models that once
characterized mainstream studio development.

Although Unity is an immensely popular game engine, its long-term
commercial viability is not inevitable or guaranteed. By 2020, for exam-
ple, Unity Technologies reportedly aims to go public via an initial public
offering, meaning that it will become more accountable to its investors
and shareholders and, perhaps as a result, less driven by its current mis-
sion statement to ‘democratize game development’ (Castillo 2019).
Likewise, in the coming years, Unity aims to adopt an entity-component

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  43

and data-oriented design system in place of its current component-
oriented design system. Unity’s design system will be explained in more
detail in Chapter 3, but the important point here is that Unity’s under-
lying architecture is in a permanent state of flux, and planned changes
to this architecture may compromise the perceived ‘user-friendliness’ of
the engine as it currently stands. Regardless of how Unity changes in the
future, however, the engine has had, and will have, an undeniably lasting
impact on videogame production workflows, design methodologies, and
software literacies. The following chapters aim to explore these impacts
in more detail, by first zooming in on the specific workflow and grain
that Unity brings to bear on videogame development.

References

Anthropy, Anna. 2012. Rise of the Videogame Zinesters: How Freaks, Normals,
Amateurs, Artists, Dreamers, Dropouts, Queers, Housewives, and People Like
You Are Taking Back an Art Form. New York: Seven Stories Press.

Banks, John. 2013. Co-Creating Videogames. New York: Bloomsbury.
Barton, Matt, and Bill Loguidice. 2009. “The History of the Pinball

Construction Set: Launching Millions of Creative Possibilities.” Gamasutra,
February 6. https://www.gamasutra.com/view/feature/132316/the_his-
tory_of_the_pinball_.php.

Bogost, Ian. 2006. Unit Operations: An Approach to Videogame Criticism.
Cambridge: MIT Press.

Castillo, Michelle. 2019. “Unity Technologies Targeting 2020 IPO: Sources.”
Cheddar, February 11. https://cheddar.com/media/unity-technologies-
targeting-2020-ipo-sources.

Darchen, Sébastien. 2015. “‘Clusters’ or ‘Communities’? Analysing the Spatial
Agglomeration of Video Game Companies in Australia.” Urban Geography 23
(2): 202–222.

Dyer-Witheford, Nick, and Greig de Peuter. 2009. Games of Empire: Global
Capitalism and Video Games. Minneapolis: University of Minnesota Press.

Freedman, Eric. 2018. “Engineering Queerness in the Game Development
Pipeline.” Game Studies 18 (3). http://gamestudies.org/1803/articles/
ericfreedman.

Gazzard, Alison. 2014. “The Intertextual Arcade: Tracing Histories of Arcade
Clones in 1980s Britain.” Reconstruction 14 (1). http://reconstruction.
eserver.org/Issues/141/Gazzard.shtml.

Gillespie, Tarleton. 2017. “The Platform Metaphor, Revisited.” Culture Digitally,
August 24. http://culturedigitally.org/2017/08/platform-metaphor/.

Gitelman, Lisa. 2006. Always Already New: Media, History, and the Data of
Culture. Cambridge: MIT Press.

https://www.gamasutra.com/view/feature/132316/the_history_of_the_pinball_.php
https://www.gamasutra.com/view/feature/132316/the_history_of_the_pinball_.php
https://cheddar.com/media/unity-technologies-targeting-2020-ipo-sources
https://cheddar.com/media/unity-technologies-targeting-2020-ipo-sources
http://gamestudies.org/1803/articles/ericfreedman
http://gamestudies.org/1803/articles/ericfreedman
http://reconstruction.eserver.org/Issues/141/Gazzard.shtml
http://reconstruction.eserver.org/Issues/141/Gazzard.shtml
http://culturedigitally.org/2017/08/platform-metaphor/

44  B. NICOLL AND B. KEOGH

Guevara-Villalobos, Orlando. 2011. “Cultures of Independent Game
Production: Examining the Relationship Between Community and Labour.”
In Proceedings of DiGRA 2011 Conference: Think Design Play, 1–18.

Haas, John. 2014. “A History of the Unity Game Engine.” Interactive
Qualifying Project. Worcester Polytechnic Institute. https://web.wpi.edu/
Pubs/E-project/Available/E-project-030614-143124/.

Helgason, David. 2014. “Leading Unity into the Future.” Unity Blog,
October 22. https://blogs.unity3d.com/2014/10/22/leading-unity-into-
the-future/.

Jenkins, Henry. 2006. Convergence Culture: When Old and New Media Collide.
New York: New York University Press.

Jørgensen, Kristine. 2017. “Newcomers in a Global Industry: Challenges of a
Norwegian Game Company.” Games and Culture (OnlineFirst). https://doi.
org/10.1177/1555412017723265.

Keogh, Brendan. 2019. “From Aggressively Formalised to Intensely In/
Formalised: Accounting for a Wider Range of Videogame Development
Practices.” Creative Industries Journal 12 (1): 14–33.

Kerr, Aphra. 2017. Global Games: Production, Circulation and Policy in the
Networked Era. New York: Routledge.

Kirkpatrick, Graeme. 2013. Computer Games and the Social Imaginary.
Cambridge: Polity Press.

Kirkpatrick, Graeme. 2015. The Formation of Gaming Culture: UK Gaming
Magazines, 1981–1995. New York: Palgrave Macmillan.

Lanier, Liz. 2019. “Former Unity Exec Files Lawsuit Alleging CEO Sexually
Harassed Her, Others.” Variety, June 8. https://variety.com/2019/gaming/
news/former-unity-exec-files-lawsuit-alleging-ceo-sexually-harassed-her-oth-
ers-1203236756/.

Lipkin, Nadav. 2013. “Examining Indie’s Independence: The Meaning of ‘Indie’ Games,
the Politics of Production, and Mainstream Cooptation.” Loading 7 (11): 8–24.

Lowood, Henry. 2016a. “War Engines: Wargames as Systems from the Tabletop
to the Computer.” In Zones of Control: Perspectives on Wargaming, edited by
Pat Harrigan and Matthew Kirschenbaum, 83–106. Cambridge: MIT Press.

Lowood Henry. 2016b. “Game Engine.” In Debugging Game History: A
Critical Lexicon, edited by Henry Lowood and Raiford Guins, 203–210.
Cambridge: MIT Press.

Montfort, Nick, and Bogost, Ian. 2009. Racing the Beam: The Atari Video
Computer System. Cambridge: MIT Press.

Ng, Benjamin Wai-ming. 2009. Consuming and Localizing Japanese Combat
Games in Hong Kong. In Gaming Cultures and Place in Asia-Pacific, edited
by Larissa Hjorth and Dean Chan, 83–101. New York: Routledge.

Nicoll, Benjamin. 2019. Minor Platforms in Videogame History. Amsterdam, the
Netherlands: Amsterdam University Press.

Nieborg, David B., and Shenja van der Graaf. 2008. “The Mod Industries? The
Industrial Logic of Non-market Game Production.” European Journal of
Cultural Studies 11 (2): 177–195.

https://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/
https://web.wpi.edu/Pubs/E-project/Available/E-project-030614-143124/
https://blogs.unity3d.com/2014/10/22/leading-unity-into-the-future/
https://blogs.unity3d.com/2014/10/22/leading-unity-into-the-future/
http://dx.doi.org/10.1177/1555412017723265
http://dx.doi.org/10.1177/1555412017723265
https://variety.com/2019/gaming/news/former-unity-exec-files-lawsuit-alleging-ceo-sexually-harassed-her-others-1203236756/
https://variety.com/2019/gaming/news/former-unity-exec-files-lawsuit-alleging-ceo-sexually-harassed-her-others-1203236756/
https://variety.com/2019/gaming/news/former-unity-exec-files-lawsuit-alleging-ceo-sexually-harassed-her-others-1203236756/

2  UNITY’S SOCIO-HISTORICAL CONTEXT AND POLITICAL ECONOMY  45

Nieborg, David B., and Thomas Poell. 2018. “The Platformization of Cultural
Production: Theorizing the Contingent Cultural Commodity.” New Media &
Society 20 (11): 4275–4292.

Nooney, Laine. 2013. “A Pedestal, a Table, a Love-Letter: Archaeologies of
Gender in Videogame History.” Game Studies 13 (2): n.p. http://gamestud-
ies.org/1302/articles/nooney.

O’Donnell, Casey. 2014. Developer’s Dilemma. Cambridge: MIT Press.
Parikka, Jussi. 2012. What Is Media Archaeology? Cambridge: Polity Press.
Parker, Felan, and Jennifer Jenson. 2017. “Canadian Games Between the Global

and the Local.” Canadian Journal of Communication 42: 867–891.
Sack, Warren. 2019. The Software Arts. Cambridge: MIT Press.
Sotamaa, Olli. 2010. “Play, Create, Share? Console Gaming, Player Production,

and Agency.” Fibreculture Journal 16. http://sixteen.fibreculturejournal.
org/play-create-share-console-gaming-player-production-and-agency/.

Srnicek, Nick. 2016. Platform Capitalism. Malden: Polity Press.
Stuckey, Helen, Melanie Swalwell, Denise de Vries, and Nick Richardson. 2015.

“What Retrogamers Can Teach the Museum.” In MWA2015: Museums
and the Web in Asia. https://mwa2015.museumsandtheweb.com/paper/
what-retrogamers-can-teach-the-museum/.

Švelch, Jaroslav. 2018. Gaming the Iron Curtain: How Teenagers and Amateurs
in Communist Czechoslovakia Claimed the Medium of Computer Games.
Cambridge: MIT Press.

Swalwell, Melanie. 2012. “Questions About the Usefulness of Microcomputers.”
Media International Australia 143 (1): 63–77.

Takahashi, Dean. 2018. “John Riccitiello Q&A: How Unity CEO Views Epic’s
Fortnite Success.” Venturebeat, September 15.

Tkacz, Nathaniel. 2014. Wikipedia and the Politics of Openness. Chicago: The
University of Chicago Press.

Turkle, Sherry. 2005 [1984]. The Second Self: Computers and the Human Spirit,
20th Anniversary Edition. Cambridge, MA: MIT Press.

van der Graaf, Shenja. 2018. ComMODify: User Creativity at the Intersection of
Commerce and Community. New York: Palgrave Macmillan.

Vogel, Michael. 2017. “Japanese Independent Game Development.” MA
dissertation, Georgia Institute of Technology. https://smartech.gat-
ech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.
pdf?sequence=1&isAllowed=y.

Whitson, Jennifer R. 2018a. “Voodoo Software and Boundary Objects in Game
Development: How Developers Collaborate and Conflict with Game Engines
and Art Tools.” New Media & Society 20 (7): 2315–2332.

Whitson, Jennifer R. 2018b. “What Can We Learn From Studio Studies
Ethnographies? A ‘Messy’ Account of Game Development, Materiality,
Learning, and Expertise.” Games and Culture (OnlineFirst). https://doi.
org/10.1177/1555412018783320.

http://gamestudies.org/1302/articles/nooney
http://gamestudies.org/1302/articles/nooney
http://sixteen.fibreculturejournal.org/play-create-share-console-gaming-player-production-and-agency/
http://sixteen.fibreculturejournal.org/play-create-share-console-gaming-player-production-and-agency/
https://mwa2015.museumsandtheweb.com/paper/what-retrogamers-can-teach-the-museum/
https://mwa2015.museumsandtheweb.com/paper/what-retrogamers-can-teach-the-museum/
https://smartech.gatech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=1&isAllowed=y
http://dx.doi.org/10.1177/1555412018783320
http://dx.doi.org/10.1177/1555412018783320

47

Abstract  This chapter considers how cultural software situate and
mediate the labour processes and skills of their users. Unity, the chapter
argues, positions itself as a metaplatform for the coordination of work-
flows that are intensely individualized and distributed across multi-
ple software environments. The chapter begins with a close analysis of
Unity’s software environment and a consideration of how it encourages
a ‘component-oriented’ approach to design. It then considers how this
approach redirects the videogame development pipeline, decentring the
role of the programmer in the videogame development team. Rather
than simply ‘empowering’ non-programmers, however, the final section
considers how Unity’s coordination of workflows requires developers
to streamline, coordinate, and individualize their own labour processes,
thus contributing to a broader reimaging of creative work under
capitalism.

Keywords  Workflow · Labour · Unity game engine ·
Platformization of cultural production · Skills ·
Videogame development

This chapter considers how cultural software situate and mediate the
labour processes, skills, and workflows of their users. Workflow refers
to the ways that developers streamline, coordinate, and also individual-
ize their labour processes with and through software. Workflow is a term

CHAPTER 3

Workflow: Unity’s Coordination
of Individualized Labour Processes

© The Author(s) 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6_3

https://doi.org/10.1007/978-3-030-25012-6_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25012-6_3&domain=pdf

48  B. NICOLL AND B. KEOGH

with strong affinities to software culture, albeit one whose genealogy can
be traced back through corporate discourses, domestic science, and self-
help guides focused on productivity and time management (see Gregg
2018). Workflow is consonant with broader trends of self-sovereignty in
software culture, in that an individual’s workflow—what software they
use and how they combine methods and techniques across software
environments—amounts to a unique portfolio or personal style. When
any given software project requires the coordination of multiple work-
flows—those of programmers, designers, and artists, for example—they
coalesce into a development pipeline. As discussed in the introduction to
this book, the traditional role of a game engine is to coordinate a team’s
workflows and make them interoperable, such that they can be fed into
a pipeline (Banks 2013; O’Donnell 2014; Whitson 2018). Unity in par-
ticular positions itself as a metaplatform for the coordination of work-
flows that are intensely individualized and distributed across multiple
software environments. As one respondent put it, ‘just as important as
learning Unity is learning the workflow of how you should be using it—
or a workflow, I should say, because everyone is probably different’.

Conceivably, there exist just as many Unity workflows as there are
Unity developers. The workflow of a level designer in Unity will differ
from that of an animator, just as the workflow of a programmer will dif-
fer from that of an audio engineer, and so on. Workflow can be shaped
by disciplinary expertise, the suite of software tools used by an individ-
ual or team, or even the placement of control panels and windows in a
software interface. Unity’s performed platform neutrality and its ability
to act as a site of ‘deep remixability’ (Manovich 2013: 268) for differ-
entiated software techniques makes pinpointing its direct impact on any
one specific workflow difficult. The question, then, is not whether Unity
imposes a particular workflow on developers, but rather how it enables
different relationships between multiple possible workflows. Central to
such a question is how Unity distributes power dynamics among a vid-
eogame development team, how it sets a template for the requisite skills
and roles necessary for videogame development, and how it leverages its
status as a metaplatform to enrol a diversity of workflows into its soft-
ware ecology.

Videogame development, as a set of skills, has long been poised
uncomfortably between computer programming and creative practice.
Historically, programmers and software engineers have been central to
the process of videogame development—first as hackers and tinkerers

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  49

who produced early computer games, and later as professionals in a for-
malized industry where they were (and often still are) responsible for
constructing and maintaining the code frameworks that undergird stu-
dio pipelines. While the shift from programmer-centric development to
content-centric development in the 1990s implied that the workflows of
videogame designers, artists, writers, and sound engineers were just as
(if not more) important as those of programmers and software engineers,
most in-house production workflows, tools, and pipelines remained
implicitly catered towards the disciplinary expertise of the latter disci-
plines. For this reason, programmers and software engineers often main-
tained some level of formal or informal authority over pipelines, acting as
gatekeepers and bottlenecks through which content had to be approved
and implemented. Key, then, to Unity’s supposed democratization of
videogame development is its ability to decentre the authority of the pro-
grammer and, ostensibly, to make it possible for designers and artists to
participate more seamlessly in the development process.

This chapter starts with a thick description of Unity’s project struc-
ture and editor interface to demonstrate how Unity encourages com-
ponent-oriented, as opposed to object-oriented, workflows. The second
section considers the consequences of Unity’s decentring of the program-
mer. For a small development team or studio, the ability to use Unity
(and its robust network of support and resources) in place of a dedicated
engine programmer or team of engine programmers may seem liberat-
ing from a financial and creative standpoint. Yet, by imposing its cultural
(software) framework on existing team compositions, Unity is complicit in
a broader individualization of creative labour in software culture, wherein
media creatives are expected to ‘find their way’ in an environment devoid
of job security, welfare support, and collective organization. The chapter
thus concludes with a discussion of how Unity accommodates digital cul-
tural work within a broader ‘creativity dispositif’ (McRobbie 2016) that
articulates cultural work as commodified and individualized.

Unity’s Component-Oriented Design System

A single Unity project works at a series of scales: project, scene, game
object, and component. Project refers to the entire project being
developed. A Unity project houses all the files associated with that
project—2D sprites, 3D models, scripts, texture materials, audio
files, and so on—each of which are commonly made using other

50  B. NICOLL AND B. KEOGH

cultural software and imported into the Unity project. A single project is
composed of a number of scenes. Following film terminology, a scene is
a single unit of the project, such as a particular level of a videogame, or a
test scene wherein a developer can try out new mechanics. Smaller vide-
ogames might exist entirely in a single scene, but larger videogames will
have many more. A single scene also contains a number of game objects.
A game object could be anything from the player avatar, the entire simu-
lated environment, the virtual camera, a weather system, screen elements
such as a health metre or pause menu, or an invisible object keeping
track of different variables.

Every game object is itself a bundle of components, each of which
determine some aspect of that game object. For instance, every game
object has a ‘transform’ component, which determines the position,
rotation, and scale of the object within the scene’s Cartesian coordi-
nate space. A 2D sprite game object would have a ‘sprite renderer’ com-
ponent, which determines aspects of how the 2D sprite is rendered,
whereas a 3D object would have a mesh renderer, which renders it as
a three-dimensional object. Collider components determine if the game
object is solid, while rigidbody components determine if and how the
object is impacted by simulated gravity. Users are able to make new
components via scripts or download existing ones from the Unity Asset
Store. For instance, a simple ‘move’ script might allow an object to move
in a straight line towards the player’s character. This script could be
attached to any number of objects as a component. It could be edited
to move at a slow speed on one object, but then at a faster speed on
another. This is the general hierarchy of Unity development: a project is
split into scenes; a scene consists of a number of game objects; a game
object consists of a number of components.

As illustrated in Fig. 3.1, the screen space of the Unity editor is sep-
arated into a number of panes, each of which can be repositioned and
resized as per a particular user’s workflow. While there are many possible
panes to have visible at any given time, five panes are the most common
and core for a basic comprehension of how Unity functions: project,
hierarchy, scene, game, and inspector. The project pane functions as an
explorer-type folder structure of all the files available in the project. The
hierarchy pane lists all the game objects that exist in the currently open
scene. The inspector pane provides a list of all the components attached
to the currently selected game object. Finally, the scene and game
panes provide two different perspectives on the currently active scene.

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  51

The scene pane provides a workspace view of the scene where objects can
be placed, edited, deleted, and moved, but with effects such as the sky-
box and lighting disabled. The game pane, on the other hand, provides a
view of the game space but from the view of what the hypothetical player
would see. The game pane is most crucial when considered in relation to
Unity’s ‘play’ button. By pressing the play button, the user can immedi-
ately, without leaving the Unity editor, play the scene in its current state
in the editor while continuing to tweak objects and variables on the fly.

While Unity’s core infrastructure relies on object-oriented program-
ming languages such as C#, its editor promotes what some developers
call a component-oriented design system. We discussed this term with
Anthony Coculuzzi, a Canadian programmer who was working tempo-
rarily at The Arcade when we conducted our interviews. Anthony dis-
tinguished component-based design from object-oriented programming
using the metaphor of a bike. In object-oriented programming, a bike

Fig. 3.1  A new scene in the Unity editing interface (version 2018.2.9f1).
Unity and Unity logos are registered trademarks and trademarks of Unity
Technologies or its affiliates in the USA and elsewhere. All rights reserved. Other
images, content, names, or brands are proprietary of their respective owners.
Neither this book nor its authors are affiliated with, or endorsed or sponsored
by, Unity Technologies or its affiliates

52  B. NICOLL AND B. KEOGH

can be considered an object constructed from multiple parts or com-
ponents, such as a seat, a handlebar, a gearset, and so on. These parts
contain properties that extend the base states and related behaviours
of the bike; brake pads, for example, cause the bike’s wheels to slow
down once the brake levers are depressed. Likewise, a videogame may
contain a player object, which, once broken down, consists of multiple
parts such as an inventory, health, model, and so on. A power-up item
may be implemented in such a way that it alters the player object’s base
states and behaviours. Object-oriented programming essentially involves
separating objects into their most basic parts and considering how those
parts interact. Unity promotes a different approach to design through
its component-based system. In component-based design, a bike is still
considered an object composed of multiple parts—seat, handlebar, gear-
set, and so on—but the key difference is that these components can per-
form their functions irrespective of their connection to the parent object
(that is, the bike). In other words, the bike’s wheels could be removed
and attached to a wheelchair, and they would still perform the same basic
function.

Unity’s component-oriented design system—and the ability to
augment that system with custom workflow solutions and plugin
capabilities—enables developers to create individualized toolkits that,
much like proprietary engines, can be used to iterate on existing con-
tent and develop a unique toolchain. Consider, for example, the Unity-
developed project Virtual Songlines (First Nations Software, 2018), led
by developer Brett Leavy. Leavy and his team have used Unity to cre-
ate a toolkit of assets and components that can be used on multiple pro-
jects for the same underlying purpose: to recreate Australian landscapes
as they were prior to British colonization, from the perspective of First
Australians. The Virtual Songlines toolkit includes hundreds of assets
based on Australian flora and fauna, as well as a design structure that
derives knowledge from the cultural heritage of Aboriginal landowners.
It allows different environments to be constructed relatively quickly from
this library of pre-existing elements. Brett explained that he can present
this toolkit to potential clients interested in having their community vir-
tually recreated, much as he would a proprietary tool. Here, the ‘Unity-
ness’ of the tool fades into the background, and Virtual Songlines is
instead conceptualized as a quasi-proprietary toolkit in itself.

While object-oriented programming necessitates a detailed under-
standing of an object’s functionalities, component-oriented design

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  53

can be less ‘clean’ by comparison. For Anthony, ‘you can get really lost
in how things are linked together or how things are supposed to work
together’ in Unity’s component-oriented design system. For instance,
one could alter the aforementioned ‘wheel’ component to make it work
better on bike objects, while inadvertently overlooking its connection to
(and implications for) wheelchair objects. Component-oriented design
is nonetheless advantageous for Unity developers who are not proficient
programmers. By enabling developers to drag and drop different objects,
components, and files between Unity’s different panes, tweak the set-
tings of an object’s components in the inspector pane without having to
edit code directly, and test prototypes in the editor without first request-
ing a build from the programming team, Unity arguably levels out the
hierarchies inherent in traditional videogame development pipelines and
affords more individualized workflows.

Decentring Programmers, Redirecting Workflows

One of the key claims made by and about Unity is that it empowers
designers and artists to make contributions to projects without hav-
ing to default to the technical expertise of a programmer or software
engineer. Consider, for example, the Unity-developed videogame The
Gardens Between (The Voxel Agents, 2018), published in 2018 by a
small team of developers known as The Voxel Agents. The Gardens
Between is a side-scrolling puzzle videogame with a distinctive visual aes-
thetic and time-manipulation mechanic. Matthew Clark, programmer
and co-founder of The Voxel Agents, explained that he collaborated with
a broad team of designers, writers, and artists on the project, many of
whom had never worked on a videogame before. Through Unity, each
member of the team was able to directly create and edit content, with-
out needing to filter their decisions through a programmer’s skill set,
taste, and workflow. By the end of the project, the animator, who had
never worked on videogames before, had taught himself shader program-
ming and was even writing custom scripts using a visual scripting plugin
called Playmaker. ‘We couldn’t have made The Gardens Between with-
out his ability to do that’, Matthew told us, ‘because I’m not an artist.
I’m a programmer’. The Voxel Agents are one among many teams who
have leveraged tools such as Unity to adopt a decentralized team struc-
ture, wherein programmers, designers, and artists are afforded the abil-
ity to individualize and thus authenticate their workflows. ‘Back in the

54  B. NICOLL AND B. KEOGH

day’, Matthew explained, ‘[shader programming] was just a really scary
thing to even attempt to learn. There was just so much technical stuff
that you would need to wrap your head around in order to understand
shader programming, whereas, just the fact that the [Unity] tools make
it easy to get that feedback in real time makes it easier to teach yourself ’.
Having foregone the hierarchical production pipelines that characterized
videogame development in the 2000s and early 2010s, teams such as
The Voxel Agents are using Unity to make it easier for artists, designers,
and audio engineers to directly participate in the collaborative process.

Reflecting on the advantages of a decentralized team structure,
Matthew recounted his experiences working in the Australian videog-
ame industry prior to the widespread adoption of Unity. He provided an
example of a proprietary tool that had artists and designers implementing
changes to a videogame’s user interface by directly editing a text file. ‘If
you wanted a button [on the user interface] to be a bit further to the
left’, he explained, ‘you’d have to [type out] x = −12, and then our sys-
tem would compile that into the build and then make the build and then
you’d play the build [to check it], so you couldn’t do any live editing’.
To this extent, one of Unity’s key impacts on production workflows—
and design methodologies by extension—is that it offers real-time feed-
back on edits through its component-based design system and inspector
pane. In most proprietary engines, developers need to implement
changes (usually via the expertise and at the whim of a programmer),
compile, test, take screenshots, record necessary changes, and then go
back to make the necessary edits. Matthew explained that, when work-
ing with custom tools in this way, there was ‘always a trade-off between
effort and quality—if the effort is too high you’ll just stop at a certain
quality level because it’s not worth it to go higher’. As a programmer,
Matthew would often need to implement changes and requests made by
designers and artists. He described having to make judgements as to the
quality of the proposed change versus the effort required to implement
said change. ‘When designers would request features’, he explained, ‘if I
thought an idea was bad and it was going to be hard work, it’s really easy
to push back and be like, “no, it’s going to be too hard for me to build
this tool”’.

In this hierarchical arrangement, which is also documented in Casey
O’Donnell’s (2014) account of development pipelines in larger stu-
dios, the programmer possesses extensive power to determine the
direction the videogame takes. When using Unity, however, the ability

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  55

for different team members to, with minimal effort, place objects in a
scene and press play decentres the programmer from the pipeline. If a
videogame designer or artist wishes to experiment with different variable
values, they can simply press play and try the scene while adjusting the
values on different components in the inspector. Furthermore, given that
Unity is interoperable with a range of different software tools familiar to
designers, artists, and audio engineers—Maya, Blender, FMOD, and so
on—it is in a position to enrol a variety of possible workflows. In compo-
nent-oriented development, there is often less of a singular pipeline con-
structed from subsequent, individual workflows, and more of a shared
pool, with each team member’s workflow directly interfacing with the
project itself. In this way, individual developers are able to make direct
changes and exert a direct agency over the shape and direction of the
project.

The Melbourne-based videogame studio House House provide
another example of this decentring of the programmer in the develop-
ment pipeline. House House started their first project, Push Me Pull
You (2016), as a hobbyist project. Nico Disseldorp, the only member of
the team with programming experience, developed the videogame in a
custom-made web browser engine. In his own words, Nico acted as a
‘bottleneck’ through which content was implemented in the game. Once
the team switched to Unity for their subsequent project, Untitled Goose
Game (2019), they each learned distinct parts of the engine—as another
member of the team explained, ‘someone had to learn the animator
component of Unity, so that person became the animator’. This meant
that despite the team ‘not really having job titles’, each member began
self-identifying as having a distinct role. Each member was therefore able
to directly interface with the project through the Unity editor, rather
than wait for Nico’s availability to import their changes.

By the same token, House House were one among several teams we
interviewed that described encountering more conflicts in the collabora-
tive process as a result of adopting a more decentralized and individual-
ized workflow structure. When multiple team members work directly on
the same Unity project, they run the risk of generating merge conflicts.
Merge conflicts occur when two or more simultaneous edits on the same
project file are incompatible or contradictory. It is then necessary to pick
through past iterations of code by using version control software such as
Git to identify and resolve said conflicts. Most teams we spoke to were
using in-house management processes and custom strategies to alleviate

56  B. NICOLL AND B. KEOGH

these risks. House House, for example, described using a physical totem
that could only be on one member’s desk at any given time. ‘Unless
the totem was on your desk’, Nico explained, ‘you knew you weren’t
meant to touch the scene file’. Another developer spoke of structuring
his team’s code base such that scenes were not interdependent on each
other—a smaller scene could be edited without having to edit a broader
scene, for example—which enabled his team ‘to keep our workflows
apart so that we can both work independently without stepping on each
other’s toes’. Larger studios relied more heavily on the guidance of cre-
ative leads and project managers to strategically manage the workflows
of individual team members. In this way, Unity decentres the role of
the programmer but recentres the role of the creative lead, who is now
tasked with coordinating the workflows of their team.

In many cases, Unity does not simply decentre the development
team’s programmer, but replaces them entirely. Or, put more positively,
Unity enables videogame development for teams that lack the resources
to hire more specialist programmers. Morgan Jaffit of Brisbane-based
studio Defiant Development, for example, explained that if his studio
were to build their own engine, they would need to hire multiple soft-
ware engineers, which would far outweigh the cost of a Unity licence:

I mean, what is a programmer worth? Not all programmers’ salaries, espe-
cially in Australia, are huge. But even conservatively, taking a programmer
on a $60,000 [AUD] salary, a low salary for most professional program-
mers. That $2,000 [a year] Unity license accounts for $5,000, $10,000 a
month [to hire a programmer]. It’s about two weeks of their work? The
concept that you can’t get more done by having Unity as your starting
point than a programmer could achieve for two weeks of work, with the
exception of some very, very, very specific game types, is boggling.

In this case, for Morgan, Unity does not simply displace certain pro-
gramming skill sets but is capable of potentially replacing them in some
roles. Furthermore, utilizing Unity as a low-cost resource means taking
advantage of its general-purpose toolset and its extensive network of sup-
port, which includes its Asset Store, online troubleshooting provided
by users, and regular software updates and fixes provided by Unity’s
in-house software engineers. This allows a studio to, in Morgan’s words,
be a ‘games company, not a tech company’. While in the past creating
the tools and the videogame were often synonymous, with engines like

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  57

Unity, these requirements become more differentiated. In the process,
the dynamics and relationships between different roles and workflows
within the pipeline are reconfigured.

Productive Workflows

While many non-programmers speak of being more empowered by the
ability to manipulate components in Unity without going through the
potential bottleneck of a programmer, this does not mean that Unity is
a completely open or unbiased tool. Rather, Unity takes on a mediating
role—similar to that traditionally held by the programmer—in the var-
ious practices, decisions, and workflows it encourages and discourages.
As one developer put it,

Unity affords specific practices and pipelines and processes, and you
can fight against that, but to be most effective and to get the most out
of Unity, you need to find ways of working within those constraints and
turning the weaknesses into strengths. You’ve got to find ways of being
like, ‘oh well, I can’t do this in Unity, but I’m going to make a game that
doesn’t need that’.

This balancing act of working within and against Unity’s affordances can
be conceptualized through the metaphor of ‘grain’, which we explore in
more detail in the following chapter. In the meantime, it is important
to consider how Unity specifically and cultural software generally render
opaque their own mediation of their users’ workflows. When the above
developer described ‘making a game that doesn’t need’ what he could
not do in Unity, he was describing a pipeline bottleneck not dissimilar to
that once determined by a programmer. Indeed, ‘Unity’ here comes to
stand in for a wider network of programmers—those working for Unity
as well as the broader community of Asset Store developers, bloggers,
and forum contributors. Unity, then, does not replace the programmer
at all, but displaces them to a background, external position, beyond the
usual conceptualization of the development team.

Thus, rather than directing their frustrations at a programmer, devel-
opers direct their frustrations at Unity’s restrictions, assumptions, and
preferences—or what Whitson (2018) calls the engine’s voodoo agency.
Game engines, as Whitson (2018) argues, are often viewed as recal-
citrant, opinionated, and unpredictable, never fully bending to the

58  B. NICOLL AND B. KEOGH

expectations of their users. For Whitson, this often means that game
engines reinscribe the authority of the programmer, as designers and art-
ists often find themselves having to summon the programmer’s magic
touch to ‘coax’ the engine ‘into alignment’ with their creative visions
(Whitson 2018: 2316). Likewise, many developers speak of coaxing
Unity into alignment with their creative workflows as opposed to work-
ing with or against Unity’s specific workflows. Ironically, many Unity
developers conceptualize the labour of videogame development through
a programming lens, where the software is not considered a mediating
tool that makes its presence felt, but rather as a neutral platform that
fades into the background as a means of enabling seemingly autonomous
creativity.

This connects to a particularly neoliberal and post-industrial fetishi-
zation of ‘creativity’ that ‘now appears to value more “flexible”, “aes-
thetic”, and “soft” workplace cultures’ (Banks 2007: 92) in ways that
are particularly exemplified by the tech industry (Gregg 2018). This fet-
ishization, in turn, individualizes cultural work as a means of disassociat-
ing creative labour ‘from traditional notions of what might make a good
workplace (order, planning, efficiency, democracy, mutuality, security and
stability)’ (Banks 2007: 92; see also McRobbie 2016). Unity’s enrolment
of a wider range of workflows can thus be contextualized within the crit-
ical literature on cultural work, which demonstrates how creative labour
is increasingly tied to notions of self-actualization and ‘meaningful’ work
in place of traditional social ties and collective forms of support (Banks
2007; McRobbie 2016; Gregg 2018). In cultural software, the practice
of the commodified cultural worker and the workflow of the entrepre-
neurial tech worker converge in a desire for self-governed productivity.

Unity’s aim to democratize development may indeed empower people
with different skills to make and share videogames. However, those peo-
ple are typically doing so with less resources than those that can afford to
make or lease proprietary engines, and without the security and benefits
of traditional employment structures. Unity’s conception of ‘democra-
tized game development’ contributes to a romanticized and individual-
ized notion of creative work under neoliberalism that commonly sugar
coats precarious, contingent work, or a lack of employment opportuni-
ties under the utopic language of ‘entrepreneurism’ (Oakley 2014). In
Australia, for instance, after the obliteration of an industry dependent on
the resources of publishers based in North America, Unity facilitated the
emergence of small, independent teams who had no alternative pathways

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  59

to economically sustainable videogame development. In facilitating
such teams, Unity fits into an increasingly entrepreneurialized environ-
ment of videogame development, where, as Guevara-Villalobos (2014:
733) explains, ‘independent developers need to administer their budgets,
self-regulate their working hours, keep themselves updated with knowl-
edge and information about business models, general industry, new
applications and technologies, as well as take charge of marketing and
public relations’. Much of this ‘relational labour’ (Baym 2015) involves
‘interfacing’ (Whitson et al. 2018) with the wider indie ecosystem—that
is engaging festival attendees, Twitter followers, videogame critics, pow-
erful cultural intermediaries, and institutional gatekeepers—in an effort
to improve the marketability and discoverability of one’s project. Many
Unity developers are what Lobato and Thomas (2015: 49) call ‘neces-
sity entrepreneurs’ as opposed to ‘opportunity entrepreneurs’. Where
opportunity entrepreneurs are ‘those who can see and act on market
opportunities, and are the classic self-starting go-getters’, necessity entre-
preneurs ‘are locked out of certain markets [and] improvise and get by
however they can. Everyday work takes on a quality of individual, ad
hoc enterprise, whether they like it or not’. This distinction is crucial
and commonly not made in discourses around both cultural and techno-
logical work. People performing precarious and contingent work (such
as Australian videogame developers using Unity), doing what they can
do to ‘get by’, are instead romanticized as self-driven and autonomous
opportunity chasers.

As flagged in the introduction, Unity is characterized by a contradic-
tion of empowerment and disempowerment in the workflows it affords.
It is a useful illustration of Wendy Chun’s (2011: 59) argument that
software interfaces ‘have become functional analogs to ideology and its
critique’. Broadly speaking, ideology—in its various incarnations—aims
to naturalize worldviews and make opaque hegemonic structures appear
commonsensical. Likewise, software interfaces make complex computer
processes (which ultimately conceal structures of power) appear ‘trans-
parent’, and they provide tools for authoring and editing as a means of
bolstering ‘our seemingly sovereign—empowered—subjectivity’ (Chun
2011: 9). Unity simplifies and demystifies, but in the process, it invar-
iably re-enforces a particular vision of how videogame content should
be developed. ‘You can fight against [Unity]’, as the above respondent
put it, ‘but to be most effective and to get the most out of Unity, you
need to find ways of working within those constraints and turning the

60  B. NICOLL AND B. KEOGH

weaknesses into strengths’. Importantly, however, Chun’s (2011: 59)
argument is that software interfaces mimic ideology and its critique.
Tools such as Unity enable a whole range of media creatives to partic-
ipate in—and thus critique—a craft that was once considered prohib-
itively complex for non-programmers. To appropriate Chun’s (2011:
59) words, Unity is ‘a powerful response to, and not simply an enabler
of, postmodern/neoliberal confusion’. As she elaborates, ‘using free
software does not mean escaping from power, but rather engaging it
differently’ (Chun 2011: 21). This statement is evident in the paradox-
ical combination of empowerment and disempowerment at the heart of
Unity’s interface, as well as in the attitudes of the constituents it enrols.
Unity does not necessarily give developers tools to escape the videogame
industry’s legacy power structures and design traditions, but it does at
least provide a means by which developers from different backgrounds
might engage those structures and traditions differently.

While Unity (and commercial game engines more generally) is argu-
ably a net positive for developers in the way it displaces the previously
ingrained dominance of the programmer within the pipeline hierar-
chy, it also points towards how cultural software generally contribute
to a shift in perceptions of cultural work from irrational creativity—art
for art’s sake—to commodified, rationalized, and individualized ‘work-
flows’. Cultural software empowers—within particular entrepreneur-
ial framings—but it also provides particular shape and structure to the
creative work it empowers. While this chapter considered Unity’s shap-
ing of developers’ production workflows, the next chapter considers its
impact on the creative process itself and the cultural reception of Unity-
developed videogames.

References

Banks, John. 2013. Co-creating Videogames. New York: Bloomsbury.
Banks, Mark. 2007. The Politics of Cultural Work. New York: Palgrave

Macmillan.
Baym, Nancy K. 2015. “Connect with Your Audience! The Relational Labor of

Connection.” The Communication Review 18 (1): 14–22.
Chun, Wendy Hui Kyong. 2011. Programmed Visions: Software and Memory.

Cambridge: MIT Press.
Gregg, Melissa. 2018. Counterproductive: Time Management in the Knowledge

Economy. London: Durham University Press.

3  WORKFLOW: UNITY’S COORDINATION OF INDIVIDUALIZED LABOUR …  61

Guevara-Villalobos, Orlando. 2014. “Artisanal Local Networks: Gamework and
Culture in Independent Game Production.” In Handbook of Digital Games,
edited by Marios C. Angelides and Harry Agius, 730–750. Hoboken: Wiley.

Lobato, Ramon, and Julian Thomas. 2015. The Informal Media Economy.
Hoboken, NJ: Wiley.

Manovich, Lev. 2013. Software Takes Command. Cambridge: MIT Press.
McRobbie, Angela. 2016. Be Creative: Making a Living in the New Culture

Industries. Cambridge: Polity Press.
Oakley, Kate. 2014. “Good Work? Rethinking Cultural Entrepreneurship.”

In Handbook of Management and Creativity, edited by Chris Bilton and
Stephen Cummings, 145–159. Cheltenham: Edward Elgar.

O’Donnell, Casey. 2014. Developer’s Dilemma. Cambridge: MIT Press.
Whitson, Jennifer R. 2018. “Voodoo Software and Boundary Objects in Game

Development: How Developers Collaborate and Conflict with Game Engines
and Art Tools.” New Media & Society 20 (7): 2315–2332.

Whitson, Jennifer R., Bart Simon, and Felan Parker. 2018. “The Missing Producer:
Rethinking Indie Cultural Production in Terms of Entrepreneurship, Relational
Labour, and Sustainability.” European Journal of Cultural Studies (OnlineFirst):
https://doi.org/10.1177/1367549418810082.

http://dx.doi.org/10.1177/1367549418810082

63

Abstract  This chapter considers Unity’s aesthetic impact on the cultural
work it is used to produce, developing the metaphor of ‘grain’, from
woodworking, to consider how users are oriented towards particu-
lar design methodologies. The chapter first considers how videogames
inherit a nebulous ‘look and feel’ from their engines. It then charts the
interrelationship between the design principles that are developed within
a medium and the design standards that are imposed by software and
that, in Unity’s case, become design principles. Finally, the chapter con-
siders Unity’s dominant design standard of iterative design, which
encourages Unity users to take advantage of existing assets. Here, the
look and feel of a game engine is directly caught up with the aura, or lack
thereof, of an individual videogame work.

Keywords  Unity game engine · Look and feel · Game feel · Grain ·
Craft · Videogame development

Like all cultural software, Unity has default settings and processes that
attempt to pre-empt the most common workflows through which
users—in this case, videogame developers—create, edit, and iterate upon
content. While Unity does offer those with the requisite skills the oppor-
tunity to make low-level adjustments and manipulations in the engine’s
editor environment, many developers use Unity explicitly because they
lack such a skill set. Thus, most Unity developers feel compelled to adopt

CHAPTER 4

Grain: Default Settings, Design Principles,
and the Aura of Videogame Production

© The Author(s) 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6_4

https://doi.org/10.1007/978-3-030-25012-6_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25012-6_4&domain=pdf

64  B. NICOLL AND B. KEOGH

design methodologies that approximate Unity’s ‘opinion’ of what the
design process should look like—to, in the words of several respondents,
‘follow the path of least resistance’. Many respondents also emphasized
the need to actively and deliberately divert from this path in their work-
flow and design, lest their final product be too readily identifiable as just
another ‘Unity game’.

In this chapter, we consider Unity’s aesthetic impact on the cultural
work produced with it using the metaphor of ‘grain’. Several respond-
ents used the term grain when reaching for a way to describe Unity’s
impact on their work, and we find it a fruitful concept for considering
the relationality of a cultural software’s affordances (see Bucher and
Helmond 2017). Going with or against the grain of something is a collo-
quialism derived from woodworking—that is, cutting with or against the
pattern and orientation of wood fibres. In a very abstract sense, Unity
also has ‘patterns’ and ‘fibers’—protocols, standards, and affordances—
that orient users towards particular design methodologies. Grain thus
allows us to consider how design processes enter into dialogue with
broader cultural processes. For game engines in particular, grain artic-
ulates how videogames inherit a particular ‘look and feel’ from their
engines that is then received either positively or negatively by an audi-
ence. As a concept, grain also draws attention to the banal but often
overlooked materiality of digital creative work. One studio director put
it thus:

Without getting all Marshall McLuhan about it, the medium matters and
the artistic medium of creation matters, and what the sorts of toolsets
enable you to do easily matter. It even comes down to the sorts of visual
things that are present. The filters and focuses and ways of putting poly-
gons on screen that are easily there and easy to use, the fonts and the text;
there’s a definite look to a Unity game. Or there was. Not all games look
like Unity games, but there’s a definite kind of baseline look.

Like any creative tool—be that a canvas, camera, or musical instru-
ment—cultural software have ways in which they are easier to use and
ways in which they are more difficult to use. A particular cultural soft-
ware will make certain design decisions more likely and others less
likely. However, unlike analogue tools such as musical instruments, cul-
tural software are also bound by software protocols that enforce certain
design decisions—they are, in the words of one respondent, ‘one of the

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  65

of the only creative methods that tells you “no”’. This is not to say that
cultural software ‘determine’ the creative decisions of their users in any
straightforward or linear manner, but rather that cultural software have
distinct grains that orient developers towards particular design standards
and methodologies (Norman 2013). As flagged in previous chapters, it is
also important to note that Unity’s grain is relational, in that it is shaped
not only by the decisions of Unity Technologies’s key stakeholders and
in-house software engineers, but also by the collective intelligence of its
online communities and Asset Store developers, whose assets and plugins
are regularly folded into Unity’s default toolset.

While Unity makes claims to empowerment and democratization
by virtue of being a general-purpose game engine, most respondents
regarded Unity’s grain as annoying, presumptuous, or limiting. This
speaks to the (long-standing) fantasy of a blank, neutral game engine
through which ‘any’ videogame idea can be realized, and upon which
‘any’ workflow can be utilized. Ironically, while respondents regarded
Unity’s grain as stifling, they tended to view more specialist, niche, or
grassroots game engines in a more positive light. The highly defined
affordances of, for example, the Twine engine, which can only be used
to create interactive fiction, or Bitsy, which restricts developers to 8 × 8
pixel sprite images and a three-colour palette, are viewed as quintessen-
tial to what a ‘Twine game’ or a ‘Bitsy game’ fundamentally is and ulti-
mately as conducive to creative expression. Unity’s grain, meanwhile, is a
locus of popular anxieties around issues such as ‘asset flipping’ (a derog-
atory expression describing videogames built from prefabricated assets)
and the supposed ‘indiepocalypse’ (the fear that, as a result of the various
barriers to videogame development being lowered, there are now ‘too
many games and too many developers’ [Wright 2018: n.p.]).

These anxieties essentially boil down to a fear that Unity’s compo-
nent-oriented design system (explored in the previous chapter) renders it
‘too easy’ for people to make videogames. The notion that there are too
many ‘Unity games’ connotes a glut of interchangeable, mass-produced,
and depersonalized videogames constructed from prefabricated elements,
as opposed to hypothetically bespoke, ‘handcrafted’ videogames made
from the ground up. There is, among our respondents and in videog-
ame culture more broadly, a general sense that the grain of Unity is too
easily recognizable and detectable across videogames produced in Unity.
Such claims are highly political, as will be discussed further in the follow-
ing chapter, but they do point to the fact that Unity has a perceptible

66  B. NICOLL AND B. KEOGH

‘look and feel’ that deeply mediates the cultural production undertaken
by its users. Yet, unlike grassroots game engines or, indeed, proprie-
tary engines, it is rare for a Unity videogame to flaunt the fact that it
was ‘made in Unity’. In order to market itself as a universal platform on
which ‘any’ videogame can feasibly be created, Unity Technologies has
a vested interest in ensuring that the grain of its engine remains ambig-
uous, because by doing so, it naturalizes Unity as the ‘default’ tool for
videogame production.

The first section of this chapter considers what it actually means to
claim that a particular game engine has a particular ‘look and feel’, so
as to better contextualize the role of the engine on the play experi-
ence. We then consider the relationship between cultural software and
developer, by highlighting our respondents’ articulations between the
‘design principles’ of their craft and the ‘design standards’ that a piece
of software such as Unity imposes through its ubiquity. The final section
looks at how the grain of Unity influences a standard of iterative design
both within a single project but also across Unity projects, as assets,
code, and ideas are distributed, reused, and modified between different
developers. Here, the processes of designers and the anxieties of play-
ers intersect through long-standing debates around handcrafted versus
mass-produced art.

The Look and Feel of a Game Engine

In the block quote above, our respondent notes that there is often a
discernible look to videogames made in the same game engine, inher-
ent in seemingly mundane elements such as ‘ways of putting polygons
on screen’. It is common for developers, critics, and players to attempt
to identify the engine provenance of a particular videogame through
judgements based on intuition and connoisseurship—judgements that
are, in most cases, difficult to break into a set of well-defined schemas.
The ‘look’ of a particular game engine can, in some instances, be iden-
tified through the visibility or arrangement of particular elements that
the player recognizes from other videogames made using the same game
engine: the use of, for example, particular fonts, particular methods of
rendering lighting or simulating physical interactions, or particular styl-
ings of user interface elements. These elements not only impact how a
videogame made in a particular engine looks, but also how it feels. By
‘feel’, we are referring to videogame play as an embodied experience

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  67

of watching, listening, and touching, as has been increasingly explored
by designers through notions of game feel (Swink 2009) or juice (Gabler
et al. 2005; Brown 2016), and by scholars through phenomenological
(Keogh 2018) and affect theory (Anable 2018) approaches. A particu-
lar videogame feels a particular way to play through the intermingling
of mechanics and narrative with controller response times, input devices,
muscle memory, animation speeds, play environment, screen size, and a
whole range of technical, artistic, and embodied elements.

How a videogame looks, sounds, and controls directly influences how
that videogame feels to play, and all three of these aspects are in part
influenced by the game engine used. To claim a game engine has a ‘look
and feel’ is to draw an explicit, irreducible connection between a videog-
ame’s visual and haptic components.1 A game engine has default ways of
simulating physics, responding to inputs, casting light, drawing textures,
or generating audio. Simply using these defaults (that is, going with the
grain) requires less conscious effort, time, and resources from the devel-
oper than going against these defaults. Indeed, the whole reason one
might use a commercial game engine in the first place is to have access to
these defaults, rather than having to develop everything themselves from
the ground up, or having to hire a programmer to do so as discussed in
the previous chapter.

The notion that a game engine has a particular look and feel is not
new. In the 1990s and 2000s, if a videogame company had paid for a
licence to use a particular proprietary engine, this was often viewed as a
major selling point. The box for Raven Software’s Star Trek: Voyager—
Elite Force (Raven Software, 2000) proudly proclaims that it is ‘powered
by Quake III’, referring to the id Tech 3 engine, first associated with
Quake III: Arena (id Software, 1999). While this marketing rheto-
ric often resembled the ‘technobabble’ that Dominic Arsenault (2017)
highlights as a faux-literacy of the technical aspects of videogames used,
primarily, to build consumerist allegiances to particular platforms, it still
helped create tangible and perceptual connections between different
videogame works. This was especially true for the PC market, where,
unlike consoles, videogames were not readily distinguishable by hardware

1 Audio elements are just as crucial as visual elements, and we could just as easily discuss
the ‘look and sound and feel’ here. However, for the sake of brevity, we are restricting our
analysis to visual elements. For discussions of the role of the audio in the embodied experi-
ence of play, see Keogh (2018) and Collins (2008).

68  B. NICOLL AND B. KEOGH

platform. A player might not know exactly what it meant to say Elite
Force was powered by Quake III: Arena, but given that association, one
could feel certain similarities. Likewise, branding affiliations such as that
between Epic’s Unreal engine and the Unreal franchise of videogames
from which its name derives, and the affiliation of the Cryengine engine
with studio Crytek and its Crysis franchise, work to draw explicit links
between videogames that share a game engine provenance.

id’s Doom engine, discussed in Chapter 1, provides an instructive
example of an engine’s grain impacting a videogame’s look and feel.
id’s Doom engine (later rebranded id Tech 1) was used for a range
of videogames after the release of Doom in 1993, including the fantasy-
themed Heretic (Raven, 1994) and the sponsored adver-game Chex
Quest (Digital Café, 1996). While these videogames differ in theme,
tone, and atmosphere, they share clear similarities. For example, as illus-
trated in Figs. 4.1 and 4.2, Doom and Chex Quest are both first-person
videogames where the player navigates 3D polygonal spaces and encoun-
ters 2D sprite enemies. In these screenshots, we can see how they both
depict the heads-up display (HUD) at the bottom of the screen, with
the player’s ammo, health, and armour status arranged from left to right.

Fig. 4.1  Screenshot of Doom (id Software, 1993) (taken by the authors)

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  69

Both videogames, too, depict the player character’s face in the middle
of the HUD, with a weapon centred directly above it. While the tone,
intended audience, and even genre of these videogames are quite dif-
ferent, in these screenshots one can clearly sense a shared composition
and texture. Less explicit but directly contributing to the look and feel
of id Tech 1 videogames is how the main menu is navigated, with a
cursor token snapping from one menu item to the next, rather than a
freely movable mouse cursor. Or the fact that because of how the Doom
engine renders its three-dimensional spaces, it only provides a top-down
2D view for the developer to produce levels, and thus, it is technically
impossible to place one room directly above or below another, thus
influencing what sort of architecture and spaces the player can engage
with. Cynically, one might call each of these videogames ‘reskins’ of
Doom. More constructively, though, the different videogames made in
the Doom engine demonstrate how the game engine provides a base
skeleton that gives a fundamental shape to the videogame built up from
and around that engine. The videogames in Figs. 4.1 and 4.2 do not
look and feel identical, but they definitely look and feel similar through
their shared traits, which are derived from the grain of the Doom engine.

Fig. 4.2  Screenshot of Chex Quest (Digital Café, 1996) (taken by the authors)

70  B. NICOLL AND B. KEOGH

While Unity is much more complex and versatile than the Doom
engine, it still has a look and feel baked into its default toolset. In an
analysis of how Twine was repurposed by marginal—and specifi-
cally LGBTIQA+—videogame makers, Alison Harvey (2014: 97–98)
demonstrates how software tools that are ‘conceptualized as […] tech-
nolog[ies] of game-making’ from the ground up have ‘presumptions’
embedded in their ‘structure and paratexts’. As Harvey (2014: 97–98)
writes, ‘the presumptions about what constitutes a fundamental game
design process become clear in the tutorials of many development pro-
grams […] this includes shooting a projectile from one sprite to, or more
accurately, at another’. As an example of this, Unity’s tutorial video for
‘raycasting’—a commonly used function for casting a line through the
virtual space from a specific point at a specific angle to see what is in a
certain direction—uses the prominent example of a character shooting
a gun as a means of demonstrating what this very general method can
be useful for. More mundanely, Unity’s default ‘first-person controller’
prefabricated component can be dragged into a scene to create, in a sec-
ond, all of the elements required to allow the player to walk around a
3D space using typical keyboard and mouse or gamepad controls. This
prefab is part of Unity’s core code framework and is used commonly
by amateur and student developers for first-person shooters and ‘walk-
ing simulators’.2 While the first-person controller has a number of var-
iables that can be altered in the inspector pane, it possesses commonly
used default settings, which means there is a default way of moving, a
default speed, a default field-of-view, and a default footstep sound, the
latter of which can often be heard in many Unity-developed first-person
videogames.

To stress, these elements can be edited or redesigned on a very low-
level. If the designer wishes to create their own custom first-person con-
troller from scratch, they can, and indeed, many do. But as discussed
above, such low-level work is hard to justify for many smaller teams
lacking the resources and time to build something from the ground
up. Indeed, this is probably why they have chosen to use Unity in the
first place: to avoid investing unnecessary resources in the development

2 ‘Walking simulator’ is a (somewhat contentious) term used to describe first-person vid-
eogames typically focused on exploration, observation, and narrative, as opposed to shoot-
ing, platforming, or puzzle-solving (see Muscat 2018).

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  71

of custom solutions and tools. The fact that Unity can, theoretically,
be manipulated on such a low-level, but often is not, perhaps speaks to
the derision with which Unity games are discussed when they ‘feel like’
a Unity game. While a videogame made in the Doom engine or with
Twine might be perceived as adhering somewhat quaint creative con-
straints that a creator has creatively worked within or around, using the
default footstep noises that come with Unity’s first-person controller can
be perceived as lazy, unprofessional, or derivative.

Indicative of this perspective is former videogame journalist and
YouTuber Jim Sterling, who has built a sizeable audience by playing and
mocking what he perceives as ‘bad’ videogames—that is videogames
built by small and inexperienced teams, who often rely on using large
numbers of prefabricated assets. Inevitably, many of these videogames are
made in Unity. In one particular video rallying against Unity for a per-
ceived glut of ‘bad’ videogames on marketplaces such as Steam, Sterling
calls Unity the ‘engine of choice for the laziest of developers’ (Sterling
2017: n.p.). While Sterling is willing to admit that plenty of ‘good’ vid-
eogames are made in Unity, he claims these are typically developed by
studios using the Professional licence, and thus, these ‘good’ videogames
do not have a ‘Made in Unity’ splash screen. Thus, for Sterling, players
are only made aware that a videogame is made in Unity when it is a ‘bad’
videogame made with the Personal licence. Inherent in such a hypothesis
is a direct correlation between budget and quality, and a conflation of
‘professional’ products with ‘amateur’ works that will be unpacked fur-
ther in the next chapter. Important, here, is that it is a particular ‘look
and feel’ of Unity that is explicitly perceived as denoting a videogame of
bad quality, and it is the broader range of marginal videogame makers
seemingly empowered by Unity’s pricing and accessibility that bare the
brunt of this criticism and, often, subsequent harassment. Thus, Unity’s
explicit performance of neutrality directly clashes with the grain its users
must inevitably work with and poses a challenge to its claims of democ-
ratization. Subsequently, instead of a videogame’s particular relation to
its engine representing creative expression within constraints, it comes to
represent, to a particular audience at least, a perceived lack of creative
expression, a ‘making do’ with what is available as opposed to creating a
bespoke work. Videogame developers who use Unity must navigate these
potential responses and, in the process, decide whether they go ‘with’ or
‘against’ the grain of Unity.

72  B. NICOLL AND B. KEOGH

Design Principles and Design Standards

The further one strays from ‘the path of least resistance’ in Unity, the
more likely they are to encounter challenges and complications—not
only in the design process but also in the methodological and discipli-
nary assumptions one brings to the design process. Terry Burdak, lead
designer of the videogame Paperbark (Paper House, 2018), was par-
ticularly articulate on these issues. Paperbark is a Unity-developed vid-
eogame where the player explores an Australian bush environment
as a wombat. It has a very distinct watercolour aesthetic that, as Terry
explained, is attempting to capture the look and feel of an Australian
summer and is deeply influenced by Australian illustrators such as Julie
Vivas. Terry is an experienced graphic designer and, before he was a vid-
eogame designer, had extensive experience with typesetting and graphic
design using a wide range of cultural software.

Not five minutes into the interview, Terry described commercial game
engines as ‘janky as fuck, because of all this legacy stuff from our com-
puter science history’ and highlighted key differences between com-
mercial game engines and Adobe’s Creative Suite, noting that ‘they’re
worlds apart, and they shouldn’t be, considering they’re both meant to
be design tools’. Terry suggested that Unity is ‘a step in the right direc-
tion’ as far as making development tools more accessible, but he stressed
that ‘there’s still so much assumed knowledge about computers, about
games, about computer science’ embedded in the engine. He singled out
the visual appearance of the editing interface as an example:

They’ve tried to make everything 3D in the engine. You just look at the
UI [User Interface] and it’s just these 3D things and you rotate this 3D
space to be able to do a menu. Why would anyone want to do that? Just
like these weird horizon lines, but then the grid’s on a 2D plane. It’s
like, why is the grid on a 2D plane if we’re in a 3D space and you want
everything to be 3D? It’s really confused. I think there’s never been any
really clear design methods for creating games with a lot of these 3D
engines.

Following on from the above, Terry distinguished between design
‘standards’ and design ‘principles’. While Unity has provided developers
with something akin to universal design standards—largely by virtue of
the fact that it has become such a dominant tool—its user interface lays
bare the fact that the overall craft of videogame design lacks common

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  73

design principles. As a contrast, Terry offered the example of Adobe
Photoshop. In its user interface, Photoshop draws from an extensive rep-
ertoire of pre-existing design principles from graphic design, illustration,
and photography. In Photoshop, the user can, for example, bring up a
digital ruler to measure an image, whereas no such tool exists in Unity.
Terry’s custom solution for measuring spaces in Unity was to create 3D
blocks and manually space them apart in the environment. ‘You have
to jump through every hoop of measurement’, he explained of Unity,
‘then you have to make the hoops to jump through to then make more
hoops’. Terry’s ad hoc measurement solution is a design standard shaped
by Unity’s affordances, rather than a pre-existing design principle or
method that predates videogame development. Historically, the lack of
design principles in videogame development is a problem that can be tied
to the secrecy and protectionism surrounding programmer-centric pipe-
lines in the 1990s. This is discussed explicitly by O’Donnell (2014) as
part of the ‘developer’s dilemma’ stifling innovation and solidarity in the
videogame industry. Tellingly, a lack of design principles was a frustration
most prominently voiced by participants who had transitioned into vide-
ogame development from adjacent creative fields.

In Software Takes Command, Manovich (2013: 113) makes a simi-
lar distinction between standards and principles through his discussion
of ‘media-independent’ and ‘media-specific techniques’. Media-specific
techniques are uniquely tied to a specific medium—think Unity’s
inspector window or its component-oriented design system. Media-
independent techniques are, by contrast, concepts that can be imple-
mented to work across a range of different software tools and data
types—think cutting, copying, and pasting. Media-independent tech-
niques tend to retain their core principles even as they move between
different software environments. As an example, consider ‘cinemachine’,
a virtual camera tool originally made as a plugin for, and then acquired
by, Unity. Cinemachine aims to provide developers with accessible
tools for composing in-game cutscenes. To this extent, it incorporates
several media-independent techniques familiar to anyone with a basic
understanding of video editing tools. One such example is the ‘time-
line’, which—much like a timeline editor in any sound or video edit-
ing software—enables the developer to make live edits on a cutscene by
manipulating video segments, which are represented as ‘chunks’ in the
timeline. Cinemachine also incorporates techniques such as ‘track and
dolly’ (as in tracking shot and camera dolly), which enables the virtual

74  B. NICOLL AND B. KEOGH

camera to track a target by moving along a path determined by the user.
Techniques such as timeline and track and dolly are embedded in a web
of Unity-specific cinematic techniques, such as ‘deadzone aiming’, which
refers to a technique where the camera only tracks its target if the tar-
get moves outside an adjustable window of sight. This is useful in, for
example, 2D platforming games, where it is common for the camera to
track the player character only once they move beyond the very centre
of the frame. This collage-like composition of techniques is typical of
what Manovich (2013: 268) calls ‘deep remixability’ in software culture,
in which ‘designers remix not only content from different media but
also their fundamental techniques, working methods, and ways of rep-
resentation and expression’. This deep remixability means that, in most
cases, it is very difficult to identify the provenance of a Unity-developed
videogame—that is, which of the videogame’s various elements (includ-
ing art, music, physics, and so on) were created using Unity’s default
tools, which were created in and imported from other tools (although
this information may be revealed in splash screens or credits), and which
were the result of customized add-ons and plugins. Cultural software are
the intersection where these principles, standards, and processes of deep
remixability meet.

While Unity builds on many media-independent techniques to make
aspects of videogame development more intuitive, it nevertheless relies
on a multitude of specialized techniques that, as Terry noted, have been
inherited from histories of computer science and programming, and
which therefore come across as deeply unintuitive to developers from
other disciplinary backgrounds. Moreover, developers need to under-
stand how to utilize these techniques in a way that is legible to the
engine; otherwise, they will simply not work. ‘The thing I find really
hard about games is it’s one of the only creative methods that tells you
“no”’, Terry explained,

Say you were to pick up a musical instrument and start moving your hands
around, making noise. It’s not like if you played a scale wrong the thing
would then shut down and not let you continue until you’ve figured out
why you did it wrong. And then figure out a method to fix it so then
you can start back up the creative process again. But with games you lit-
erally get error messages that prevent you from being creative until you
fix them.

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  75

Aspects of Unity’s grain, then, cannot simply be ‘worked against’ if
one wishes to actually compile and run the project. Respondents such
as Terry, who were experimenting with unorthodox designs or who
occupied something of an alternative or marginal position in vide-
ogame culture, were the most likely to voice their frustrations with
Unity’s editing interface. Having not typically worked in the vid-
eogame industry prior to the widespread adoption of commer-
cial game engines, these respondents typically saw Unity as limited
compared to other cultural software they were experienced with, as
opposed to an improvement in accessible videogame-making software
specifically.

We must emphasize, however, that most respondents disagreed with
the notion that Unity had inhibited their design methodologies in a
meaningful sense. Even respondents such as Terry often qualified their
criticisms of Unity by first praising the engine for establishing much-
needed design standards in the videogame industry. When so many
developers are using the same tools as opposed to being locked inside a
proprietary engine’s black box, a common language can begin to emerge
between developers. Reflecting on this, Morgan made the important
point that ‘a lot of the people who have had success making games
wouldn’t have been able to make games without being able to get an
off-the-shelf toolset […] I think the fact that you see games that are built
by two, four, five people competing on Steam alongside games that were
built by 400 or 500 people […] is really a testament to what engines
offer’. Yet, simply by virtue of its ubiquity and accessibility, Unity’s
design standards potentially become design principles, as the way to do
something in Unity becomes associated with the way to do something
in videogame development, period. Developers can either work with the
grain of Unity or attempt to work against it, and working with is almost
guaranteed to have fewer complications than working against. To quote
Chun (2011: 21) once again, ‘using free software does not mean escap-
ing from power, but rather engaging it differently’. And thus, we return
again to the ways in which Unity’s grain is at once democratizing and
homogenizing, allowing more people to make more works of a greater
diversity and eclecticism of genres, but which nevertheless often look and
feel like works created in Unity.

76  B. NICOLL AND B. KEOGH

Iterative Design

Unity’s ability to both diversify and homogenize, often at the same time,
can be understood through a particular aspect of its grain that we artic-
ulate here as ‘iterative design’. At a number of scales, Unity encour-
ages reuse and repetition with incremental changes. This is visible in
the moment-to-moment workflow where the videogame can be played
within the editor following every minor tweak, with one component
often tweaked a number of times in quick succession. Iterative design is
visible, too, in the way a Unity project is ‘built up’ from individual com-
ponents and objects, with the overall project broken down into more
discrete iterative units of development. It is also visible in the repetition
and reuse of standard or popular assets, be they included with Unity as a
default package, downloaded from the Asset Store or a website, or dis-
tributed and reappropriated through the extensive network of discus-
sion boards and tutorials that surround Unity. At each of these scales,
Unity’s ability to ‘empower’ developers is intimately connected to its
ability to allow developers to repeat, reuse, and recycle. Iterative design,
here, stands in for a radical ‘openness’ that is in stark contrast to the
hegemonic restrictions of proprietary engines.

These very elements, however, stoke negative and anxious discourses
around Unity. Figures such as Sterling and the countless threads on
videogame discussion boards decrying ‘bad Unity games’ directly and
explicitly blame Unity’s grain of iterative design for a large number of
low-quality videogames oversaturating digital marketplaces such as
Steam. In the same video criticizing Unity already referenced above,
Sterling (2017: n.p.) delineates between those ‘competent’ developers
that apparently put in the effort to ensure their Unity games do not look
and feel like Unity games, and those ‘no-effort chancer[s] who thought-
lessly upload pre-bought maps and fill them with pre-bought charac-
ters’. Needless to say, this represents both a gross misunderstanding of
the process of videogame development and a particularly narrow and
consumerist notion of what might be considered a videogame of ‘good’
quality. These aspects and their cultural origins will be unpacked fur-
ther in the following chapter, but here, it is important to consider why
Unity’s grain of iterative design is so negatively received by some.

When is it preferable to follow a game engine’s path of least resist-
ance—to, in other words, go with the grain—and when is it advanta-
geous to fight against it? As discussed in the introduction to this chapter,

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  77

specialized game engines such as Twine, Bitsy, and Pico-8 tightly restrict
what the developer is able to produce by tailoring development towards
specific genres or aesthetics, whereas commercial games engines such
as Unity and Unreal market themselves as neutral and general purpose.
As such, videogames made in Bitsy very much look like ‘Bitsy games’,
and videogames made in Twine very much look like ‘Twine games’. Yet,
while the expression ‘Unity game’ is commonly used with derision, an
expression like ‘Bitsy game’ is more commonly used as a genre marker,
not dissimilar to ‘first-person videogame’. The explicit ‘Bitsy-ness’ of
a Bitsy videogame constitutes an aspect of the creative expression of
its creator working with particular tools. Similarly, a Pico-8 videogame
might be applauded for its imagining of a particular genre or idea within
Pico-8’s tight technical limitations. Around these individual cultural
software, design principles become popular and normalized common-
alities from which individual creations and cultural scenes can be built.
Contrast this with Unity’s iterative design standards, which are often per-
ceived negatively through anxieties surrounding ‘asset flipping’ and the
‘indiepocalypse’. Ironically, the elements of Unity that empower a wider
range of developers are the same elements that are seen to be the most
generic and ‘mass-produced’. The proliferation of ‘personal’, experimen-
tal, and hobbyist videogames is, somewhat contradictorily, often con-
flated with a proliferation of impersonal, mass-produced, and soulless
videogames.

These tensions have a similar precedent in Walter Benjamin’s (1969
[1935]) reflections on the ‘mechanical reproduction’ of art through
industrial processes of production, printing, and broadcasting in the
twentieth century. An original artwork, once mechanically reproduced,
is expunged of what Benjamin (1969 [1935]: 220) calls its ‘aura’—that
is, ‘its presence in time and space, its unique existence at the place where
it happens to be’. By the same token, however, mechanical reproduction
emancipates works of art from their anchorage to the dead weight of
tradition, ritual, and history. Mechanically reproduced art is, therefore,
accessible in a way that traditional art is not—accessible to people who,
by virtue of their alienation from bourgeois traditions, rituals, and histo-
ries, have not typically enjoyed the privilege of participating in the sphere
of artistic production and appreciation. We can apply a similar interpre-
tative lens to Unity and the backlash against Unity games. While some
Unity games may indeed lack an ‘aura’ attributed (rightly or wrongly)
to videogames developed using custom or specialized engines—that is,

78  B. NICOLL AND B. KEOGH

videogames that possess a clear and identifiable engine provenance; that
communicate something of the time, place, and space in which they
were made—they are nonetheless accessible to broader demographics in
a way that people steeped in the traditions, rituals, and histories of vid-
eogame development may find troubling or threatening. In Chapter 6,
we argue that the backlash against Unity games is consonant with a per-
vasive ‘hatred of democracy’—or, in the context of Unity, ‘hatred of
democratization’—in videogame culture.

Another way to think through these tensions is to consider the notion
of craft when it comes to creative software practice. In his critical his-
tory of hobbies in North America, Steven Gebler (1999: 156) highlights
the handicrafter as evoking ‘the mythical purity of the preindustrial arti-
san’ and defines hobbies generally as emerging in the industrial age so
as to provide an opportunity for ‘fulfilling labour’ in the leisure time
for those alienated from their work in the Fordist factories. Elsewhere,
Susan Luckman (2015) explores the role of craft as a (gendered) creative
economy, looking specifically at the re-emergence of handicrafts through
platforms such as Etsy. For Luckman (2015: 68–69), ‘[t]he handmade
object is marked by its solid oneness in the world, and is a sign of con-
sumer distinction in a globalised marketplace increasingly marked by a
lack of product differentiation: the handmade appeals to people in search
of the unique’. While Luckman and Gebler are both talking about phys-
ical, handmade objects, it is not a stretch to apply such ways of thinking
to the creative work of videogame developers and the cultural reception
of that work by videogame players. Here, the iterative design enabled
by commercial game engines generally and Unity specifically—argu-
ably the most ‘democratic’ aspect of Unity—becomes ironically per-
ceived as the least personalized aspect of industrial cultural production.
The ‘solid oneness’ of the Unity game is diluted by the use of seemingly
mass-produced, prefabricated components and assets ‘flipped’ and used
again and again. Thus when a developer goes with the grain of Bitsy,
they are seen to be producing something handcrafted and personal with
the tool, whereas a videogame going with the grain of Unity is perceived
as iterative and depersonalized. This can be seen in cultural software
more generally, too, such as anxieties that using Photoshop to touch up
photographs dilutes the essence of authentic photography, and the typi-
cal derision directed at electronic music production compared to music
performed with ‘real’ instruments.

4  GRAIN: DEFAULT SETTINGS, DESIGN PRINCIPLES, AND THE AURA …  79

These anxieties point towards a lack of comprehension and literacy
regarding the nature and shape of the creative process in the context of
cultural software. Through rhetorics of democratization and empow-
erment and seemingly opening up (but also homogenizing) cultural
production for a broader range of potential creators, cultural software
seemingly put at risk the oneness, the aura of the cultural work they
enable. Such anxieties are not unique to digital environments. Gebler
(1999: 260), for instance, references Deborah Nelles (1978) to look at
discourses around ‘hobby kits’ such as Paint By Numbers kits and pre-
fabricated jigsaw kits, which ‘deprive hobbyists of an opportunity “to
develop their creativity and skill”’. But cultural software specifically and
explicitly obscure both the material labour of their users and the grain of
the software: the material affordances and learned design principles and
imposed standards that such labour is always in conversation with. The
next chapter, therefore, turns to the topic of literacies and how Unity is
understood by its different constituents—videogame developers, players,
and critics.

References

Anable, Aubrey. 2018. Playing with Feelings: Video Games and Affect.
Minneapolis: University of Minnesota Press.

Arsenault, Dominic. 2017. Super Power, Spoony Bards, and Silverware: The Super
Nintendo Entertainment System. Cambridge: MIT Press.

Benjamin, Walter. 1969 (1935). “The Work of Art in the Age of Mechanical
Reproduction.” In Illuminations: Essays and Reflections, edited by Hannah
Arendt and translated by Harry Zohn. Boston: Houghton Mifflin Harcourt.

Brown, Lisa. 2016. “Vector 2016—The Nuance of Juice Talk.” YouTube,
September 9. https://www.youtube.com/watch?v=qtgWBUIOjK4.

Bucher, Taina, and Anne Helmond. 2017. “The Affordances of Social
Media Platforms.” In SAGE Handbook of Social Media, edited by Jean
Burgess, Thomas Poell, and Alice Marwick, 234–253. Los Angeles: SAGE
Publications.

Chun, Wendy Hui Kyong. 2011. Programmed Visions: Software and Memory.
Cambridge: MIT Press.

Collins, Karen. 2008. Game Sound. Cambridge: MIT Press.
Gabler, Kyle, Kyle Gray, Shalin Shodan, and Matt Kucic. 2005. How to

Prototype a Game in Under 7 Days. Gamasutra, October 26. http://www.
gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_
under_7_.php.

https://www.youtube.com/watch?v=qtgWBUIOjK4
http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php
http://www.gamasutra.com/view/feature/130848/how_to_prototype_a_game_in_under_7_.php

80  B. NICOLL AND B. KEOGH

Gebler, Steven M. 1999. Hobbies: Leisure and the Culture of Work in America.
New York: Columbia University Press.

Harvey, Alison. 2014. “Twine’ Revolution: Democratization, Depoliticization,
and the Queering of Game Design.” Game 3: 95–107.

Keogh, Brendan. 2018. A Play of Bodies: How We Perceive Videogames.
Cambridge: MIT Press.

Luckman, Susan. 2015. Craft and the Creative Economy. New York: Palgrave
Macmillan.

Manovich, Lev. 2013. Software Takes Command. Cambridge: MIT Press.
Muscat, Alexander. 2018. “Ambiguous Worlds: Understanding the Design of

First-Person Walker Games.” PhD diss., RMIT University. https://research-
bank.rmit.edu.au/eserv/rmit:162562/Muscat.pdf.

Nelles, Deborah. 1978. “From Artisan to Courtesan: The Rationalization of
Labour and Leisure.” Masters thesis, McMaster University.

Norman, Don. 2013. The Design of Everyday Things: Revised and Extended
Edition. New York: Basic Books.

O’Donnell, Casey. 2014. Developer’s Dilemma. Cambridge: MIT Press.
Sterling, Jim. 2017. “Unity Has an Image Problem.” YouTube, July 24.

https://www.youtube.com/watch?v=-z4_bjyJ4EM.
Swink, Steve. 2009. Game Feel: A Game Designer’s Guide to Virtual Sensation.

Burlington: Morgan Kaufmann Publishers.
Wright, Steven. 2018. “There Are Too Many Video Games. What Now?”

Polygon, September 28. https://www.polygon.com/2018/9/28/17911372/
there-are-too-many-video-games-what-now-indiepocalypse.

https://researchbank.rmit.edu.au/eserv/rmit:162562/Muscat.pdf
https://researchbank.rmit.edu.au/eserv/rmit:162562/Muscat.pdf
https://www.youtube.com/watch%3fv%3d-z4_bjyJ4EM
https://www.polygon.com/2018/9/28/17911372/there-are-too-many-video-games-what-now-indiepocalypse
https://www.polygon.com/2018/9/28/17911372/there-are-too-many-video-games-what-now-indiepocalypse

81

Abstract  This chapter considers the different ways that audiences invest
meanings in a cultural software. Inherent in any of these understandings
of the role and mediations of a cultural software are assumptions as to
just which skills, knowledges, and aesthetic decisions are fundamental
to the process of creating works within any given medium. This chapter
thus considers the literacies that mediate the perceptions of three differ-
ent groups towards Unity: videogame developers, tertiary students and
educators, and the enthusiast videogame press. Through an overview
of these varied perspectives of what it means to use Unity, this chapter
provides ways of considering how different literacies influence different
understandings, positive and negative, of the role of a cultural software
within a cultural field and within society more broadly.

Keywords  Unity game engine · Videogame development · Literacy ·
Education · Enthusiast press · Gamer culture · Asset flips

Cultural software are, to borrow Annemarie Mol’s (2002: vii–viii;
cf. Banks 2013: 56) term, ‘multiple objects’ that carry different mean-
ings for different people. For the graphic designer, Adobe’s Photoshop
represents a crucial tool for streamlining the creation and editing of
images. For journalists, Photoshop represents a need to be wary of ‘pho-
toshopped’ images. For design educators, Photoshop represents a vital
skill set employers expect of graduates. As discussed throughout this

CHAPTER 5

Literacy: Articulations of Unity Across
Development, Education, and Enthusiast

Contexts

© The Author(s) 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6_5

https://doi.org/10.1007/978-3-030-25012-6_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25012-6_5&domain=pdf

82  B. NICOLL AND B. KEOGH

book, Unity specifically and game engines generally have similarly been
imbued with different meanings by different people, who have different
understandings of and relationships to game engines. While many devel-
opers see the Unity game engine as ultimately empowering, sections of
the videogame consumerbase associate Unity with a glut of low qual-
ity, impersonal, and mass-produced titles. Researchers and educators,
meanwhile, express concern over the supposedly homogenizing effects
of game engines. In Computer Games and the Social Imaginary, Graeme
Kirkpatrick (2013: 105–106) argues that game engines, once introduced
in the 1990s, ‘rationalized’ the ‘craft ethos’ of videogame development,
which had the—‘perhaps imperceptible’—effect of closing off possibili-
ties for genuinely imaginative, countercultural, or experimental videog-
ame designs. In a similar vein, Eric Freedman (2018: n.p.) understands
game engines as sealing over ‘the otherwise latent potential of code’ and
thus limiting the possibilities for radical sensibilities in videogame devel-
opment. In this book, meanwhile, our concern with Unity has seen us
critique and pay attention to Unity’s governance of the developers it
seeks to ‘empower’.

Inherent in any of these understandings of the role and mediations of
a cultural software are assumptions as to just which skills, knowledges,
and aesthetic decisions are fundamental to the process of creating works
within any given medium. One might, for instance, lament the impact of
music software such as Garage Band, if one believes an authentic musi-
cian should possess the physical skill of playing a ‘real’ instrument. In
this chapter, we analyse the interplay of these often-conflicting meanings
by thinking through the literacies that surround cultural software. Here,
we understand literacy along the lines of phrases such as ‘data literacy’,
‘systems literacy’, or ‘information literacy’—that is, ‘the development of
a complex set of critical skills that allow people to express, explore, ques-
tion, communicate, and understand the flow of ideas among individuals
and groups in quickly changing technological environments’ (UNESCO
2006: 150). We are interested in how different people with different lit-
eracies invest different meanings in cultural software through their own
understandings of how a creative practice is ‘supposed’ to work and what
core qualities the canonical works of a cultural field ‘should’ possess.

Although the notion that game engines homogenize videogame pro-
duction makes sense on an abstract level, it does not fully cohere with
the understandings of Unity articulated by the developers, students, and
educators we spoke with. Perhaps the main objection is that commercial

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  83

game engines have arguably restored videogame development to
something of a folk craft, much like it was prior to the proliferation of
proprietary tools (or more accurately, the need to be able to develop
proprietary tools yourself) and closed licensing agreements in the 1990s
(cf. Keogh 2019). Unity has perhaps ‘rationalized’ such a craft mythos,
as Kirkpatrick (2013: 105–106) suggests, in the sense that more creators
take on board the risks of entrepreneurism afforded by Unity’s acces-
sibility (as explored in Chapter 3), but it has also arguably afforded a
parallel irrationalized craft mythos beyond commodification. The
lower barrier of entry has given rise to a diversity of ‘everyday game-
makers’ (Young 2018; Vanderhoef 2019), making videogames for oth-
er-than-commercial reasons, whereas before such an endeavour might
be seen as too expensive or time-consuming. As one studio director put
it to us, if the ‘standardization’ thesis surrounding commercial game
engines was true, then by now we would have witnessed a ‘homogeni-
zation of the medium and the culture, whereas it’s been the opposite—
we’ve seen a vast range of diverse voices and play experiences and types
of games to where some people even argue whether something is a game
or isn’t a game’.

Unity does not simply ‘make it easier’ to make videogames. Rather,
it automates and offsets previously fundamental skill sets (namely soft-
ware development) that were once utterly required to undertake videog-
ame development. Unity makes it possible for people with different skill
sets and technical literacies to make, share, and evaluate videogames, and
thus, Unity videogames are both more homogenous and more diverse
in different ways than videogames of previous decades. What does it
mean, then, to assume that Unity is responsible for a dearth of skills
crucial for innovation and experimentation, when the opposite seems
to be true? What does it mean for Unity to try to explicitly ‘empower’
developers by allowing the circumvention of those skills? This chapter
answers these questions by examining three different constituencies of
Unity’s circuits of cultural software. The first section explores why the
videogame-makers we interviewed use Unity. For many, Unity is quite
simply the engine they already know, and using it is hardly a conscious
choice at all. Their enrolment into Unity’s governance circuit was often
unconscious. The second section considers the role of videogame devel-
opment education programs, wherein commercial game engines such as
Unity have seen a significant uptake. Here, we consider what it means for
Unity to not just be voluntarily chosen, but prescribed at an institutional

84  B. NICOLL AND B. KEOGH

level. The third section returns to the enthusiast literacies and faux-
literacies that lead some players and critics to dismiss Unity-made video-
games out of hand. To stress, these are not the only constituents whose
varying literacies of Unity are important, and an entire chapter could eas-
ily be spent on each of these constituents. Yet, through a brief overview
of these varied perspectives of what it means to use Unity, this chapter
provides ways of considering how different literacies influence different
understandings, positive and negative, of the role of a cultural software
within a cultural field and within society more broadly.

‘Why Do You Use Unity?’
There are multiple questions to consider when it comes to selecting a
game engine for a videogame project or series of projects. As already
discussed, engines such as Unity and Unreal provide general-purpose
toolsets, whereas engines such as Twine and Pico-8 provide much more
specialized affordances. Some engines grant access to source code, while
others remain black-boxed at a low-level. Some presume access to other
skills and software, such as 3D modelling or audio composition, while
others restrict the user to the engine’s built-in tools. There are various
licensing agreements and subscription models to contend with, not to
mention proprietary considerations for certain engines. Some engines
support a range of programming languages (the open-source game
engine Godot supports C#, C++, and its own GDScript), while others
support only a single language (Pico-8, for example, only supports Lua).
There is also the question of how an engine will fit into an existing devel-
opment pipeline, as discussed in Chapter 2. How, then, do developers
arrive at a decision to use one engine in place of another? What exist-
ing skills, competencies, and understandings—in short, what literacies—
influence such a decision?

Many hobbyist and student respondents were actively experiment-
ing with different technologies, techniques, and methodologies at the
time of being interviewed. For example, Erika Verkaaik, an independ-
ent videogame-maker, educator, and Masters student based in Brisbane,
explained that they often have a specific idea for a videogame before
choosing an engine that will enable them to most effectively and effi-
ciently develop that idea. For example, if they have an idea for a text
adventure videogame, they will use Twine, whereas if they have an idea
for a 3D videogame, they will usually opt for Unity. Erika also explained

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  85

that they are often inspired to use a particular engine after they play a
particularly creative or unorthodox videogame built in that engine.
Hobbyists often identified an engine’s accessibility as a key priority,
referring to the intuitiveness of the interface, the ability to switch rap-
idly between editing and prototyping, the amount of coding required to
adequately realize a creative vision, and the cost of obtaining a licence.
Several hobbyists and students preferenced Unreal on the basis of that
engine’s Blueprint visual scripting system, which allows for program-
ming without the need to know a deep amount of syntax. Nonetheless,
although respondents in this category often used a variety of engines,
most considered Unity to be their primary engine—unsurprising, con-
sidering the report cited in this book’s introduction that over 75% of
Australian studios primarily use Unity. In our interviews, Unity’s popu-
larity often came down to its status as a general-purpose engine, its ‘free’
or low-cost availability, and its robust support networks—both online
and through local communities of Unity-using peers.

For professional and studio-based respondents, engine preference
was driven by more pragmatic concerns. For Trent, the decision to use
Unity was based on the fact that his studio was originally composed of
geographically dispersed developers and coders with proficiency in C#,
meaning that ‘anyone could download Unity and immediately jump
into it’. Morgan, who in Chapter 3 described his Brisbane-based studio
Defiant Development as ‘a games company, not a technology company’,
discussed his studio’s decision-making process in the following way:

The incentives that had previously existed in Australia around build-
ing your own technology and doing your own R&D no longer existed,
so there wasn’t a financial incentive to be building technology instead of
games. Building games was what we wanted to do. We didn’t want to
spend a year laying the groundwork for the game so that we could get it
out. So we started using Unity, which let us build things quickly and get
them out to market. That’s turned out to work out really well, and we
haven’t seen a need to move off it.1

1 See Banks (2013) for a case study of the ‘incentives’ that existed for Australian vide-
ogame companies to build custom tools in the late 1990s and early 2000s. Banks offers
a detailed ANT-inspired account of the Brisbane-based studio Auran (now N3V Games)
from 1998 to 2000, when the company was investing a huge amount of resources in the
development of a proprietary engine known as SAGE, later renamed Jet. The engine was to
be utilized not only for in-house development purposes, but also as a means of attracting

86  B. NICOLL AND B. KEOGH

Morgan went on to explain that, since adopting Unity, Defiant
Development has worked on a range of projects, from mobile videog-
ames to augmented reality projects, and that ‘Unity has handled that
transition pretty well’. House House, a four-person team introduced in
Chapter 3, switched to Unity after first building a custom web engine
for what started out as a hobbyist project. House House’s decision to
switch to Unity was, according to designer Jacob Strasser, ‘always a
given’. The team already had a level of familiarity with Unity after hav-
ing ported their earlier web videogame to the engine in order to publish
it on multiple platforms. The main alternative for House House—the
Unreal engine—‘seemed harder to learn of the two, and we were abso-
lute beginners’. Jacob’s colleague Michael McMaster spoke directly to
the power of Unity’s network effects when he added that ‘we’ve got a
bunch of friends that we can ask for help if we have issues [with Unity],
which isn’t necessarily true for Unreal’.

There were some instances where a developer’s identification with (or
against) a particular game engine (or cultural scene in the development
community) appeared to be a key factor shaping their engine preference.
For example, one developer described his preference for Unity—and his
distaste of the alternatives—in the following way:

It’s really weird but I don’t want to use Unreal because I don’t like the
name. I don’t like the way it looks. I just think it’s ugly. [The engine]
GameMaker is also ugly […] Unity is probably the most inoffensive look-
ing game engine, so that’s a big reason why we probably still use it […]
Unreal feels like daggers in you or something, you know what I mean?
It’s got like, horns or something. I don’t know. Hate it. I hate it. It’s like
Alienware and all that other stuff […] It’s really gross.

A game engine can intersect with a developer’s subject position, not
just in terms of their preference for a particular editing interface or
licensing structure, but also in terms of their cultural positioning, pol-
itics, taste, gender, and identity. We found that game engines such as

external licensees. Interestingly, Banks (2013: 51) observes that Auran set itself the impos-
sible task of developing an engine that could ‘do everything’, which, according to one of
his interviewees, was ‘all about marketing [and] hype’. This speaks to the long-standing
fantasy of a universal game engine, discussed in Chapter 2.

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  87

Unreal are often associated with ‘gamer’ subject positions (see Shaw
2012), which could be due to any number of articulations, such as the
articulation of the Unreal engine to its origins in the Unreal series of
first-person shooter videogames. The notion that a developer’s subject
position can overlap with their engine preference is particularly visible
across grassroots engines such as Twine and Bitsy, which have come to
be associated with fringe and gender-diverse videogame-making commu-
nities (Harvey 2014; kopas 2015). In a different context, Yoyo Games’
Gamemaker Studio, which was once disparaged in a manner not dissimi-
lar to the backlash against ‘Unity games’, has come to be associated with
an ‘indie’ coolness. Developers such as Cactus (responsible for videog-
ames such as Hotline Miami [Dennaton, 2012]) and Vlambeer (respon-
sible for videogames such as Nuclear Throne [Vlambeer, 2015] and Super
Crate Box [Vlambeer, 2010]) proudly label their videogames as ‘made
in Gamemaker’. Unity, however, was rarely discussed by respondents in
relation to personal identity—which is not to say that personal identity
did not play a role in their choice of Unity, but rather that Unity has
become something of a ‘default’ option.

While reasons for choosing Unity were often more pragmatically
about access to resources or skills, many studio-based respondents
struggled to coherently recall the processes that went into their deci-
sion to use Unity in the first place. In fact, when we posed this ques-
tion in interviews, it was often our impression that this was the first time
that team members had ruminated on why they had, in fact, chosen to
use Unity over, say, Unreal. This could be explained by the fact that
the decision to use a particular engine is often made by people in sen-
ior management and software engineering positions—people not always
present in the interviews. But more often, our sense was that the deci-
sion to use Unity was, to borrow Jacob’s words, simply ‘a given’ in most
scenarios.

A minority of respondents had decided to forego Unity or any other
commercial game engine to instead create their own custom engine.
These respondents possessed a clear passion for tool development
(as opposed to simply videogame development) and were typically devel-
oping niche, high-performance, or unorthodox projects that, in their
view, necessitated custom tools. Discussing their desire to produce their
own custom tools, these respondents often echoed concerns in the intro-
duction to this chapter that game engines pave over ‘the otherwise latent
potential of code’ (Freedman 2018: n.p.). Lawrence Millar-Madigan,

88  B. NICOLL AND B. KEOGH

a software engineer working part-time at The Arcade, was independently
developing a custom engine when we met him in October of 2018.
He described his motivation for doing so as follows:

Our experience—you and I, what we experience day-to-day—we’re not
electrons, we’re not matter. We’re in the ether. Our experience is not a
physical one, really. But it’s based on extremely complicated and weird
physical interactions that are going on. When you make a game from first
principles, it’s like you can see the way life connects to its own underpin-
nings. You feel connected to that building of something transcendent,
from building blocks that are integral and down to earth […] That’s what
motivates me to do what I’m doing.

Just as many studio developers often struggled to recall the reasons
why they originally decided to use one engine over another, Lawrence
explained that his interview with us was one of the few moments where
he felt prompted to distil his thoughts on why he had chosen to develop
his own engine. ‘You’ve put me in a spot where I have to express it prop-
erly’, he explained, ‘and I never really expressed it quite like that before.
I understand it on an emotional level, but at times I wonder, “what am
I actually doing?”’.

We assumed that developers of custom game engines would have
a clearer sense of why they had chosen to ‘roll with their own tools’,
but this was not always the case. Quite simply, for many developers,
what engine to use (or create) is not a ‘choice’ at all, but is shaped by a
range of factors including identity, community, available resources, and
pre-existing skills. Even in large studio contexts with proprietary engines,
the engine used for a videogame can simply come down to what is avail-
able. For example, in his in-depth journalistic investigation of the begin-
nings of Respawn Studio and the development of Titanfall (Respawn,
2014), Geoff Keighley (2014) highlights how the team spent many
months to make the videogame work in Insomniac’s Luna engine (orig-
inally used for Ratchet and Clank: A Crack in Time [Insomniac, 2009])
simply because Insomniac’s CEO offered the engine to the young studio
for free. Ultimately, however, the videogame was rebuilt in Valve’s age-
ing Source engine, because Luma introduced too many workflow chal-
lenges. Given that even larger studios encounter these kinds of problems,
it is not surprising that so many small-to-medium-sized studios default
to Unity, an engine that prides itself on providing a generalist framework

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  89

upon which ‘any’ videogame can be developed. Quite simply, develop-
ers often use Unity because they already know how to use Unity, and
developers already know how to use Unity because Unity has successfully
ensconced itself within local communities as the default option.

Unity in Tertiary Education

When asked how they first got into creating videogames, most develop-
ers’ background stories fit one of two common narratives. Either they
first encountered videogame development by tinkering with freely availa-
ble tools (typically Unity, Flash, Twine, or modding, depending on when
and how the developer was introduced to videogame-making), or they
were first introduced to videogame development when they commenced
a tertiary-level videogame development education. How Unity fits into
the former of these has already been hinted at in previous chapters’ dis-
cussions of Unity’s self-positioning as a ‘democratizing’ tool, its low
barrier to entry, and its extensive online networks and resources of sup-
port. However, formal videogame development education is an equally
crucial site in which the particular literacies of Unity are normalised.
Increasingly, Unity either explicitly or implicitly becomes the default
learning environment for student videogame developers, and schools
become a crucial juncture where Unity’s dominance is reinforced and
perpetuated—not dissimilar to the dominance of Photoshop in graphic
design curriculums.

Since the turn of the century, tertiary videogame development pro-
grams have emerged globally to teach videogame development from
a range of different perspectives, be that art school, computer science,
or the creative industries. The proliferation of these schools has been
driven, in part, by rapid industry growth in specific regions and by a
broader enthusiasm among younger generations to pursue a career in
videogame development. While little scholarly attention has been paid
to videogame development programs (see Harvey 2019; and Zagal and
Bruckman 2008 as notable exceptions), the role and effectiveness of
videogame development programs is a hotly and perpetually debated
topic among videogame development professionals, and intersects with
broader debates around the role of cultural skills education in the con-
temporary university (Bridgstock and Cunningham 2016). As formal
videogame development education is a relatively recent phenomenon,
many industry veterans who did not enter the industry via such programs

90  B. NICOLL AND B. KEOGH

themselves are sceptical of the value of such a pathway, and they often
suspect the schools of directly exploiting the dreams and passions of their
student cohorts (Warner 2018; Wright 2018). Other developers and
educators, such as Robert Yang (2018), are critical of the industry’s scep-
ticism towards videogame development education, noting that education
programs do not simply exist to funnel students into an industry, and
that the industry is naive if it expects graduates to be ‘job ready’ right
out of school, rather than requiring further mentorship, support, and
onboarding from their potential employers.

One site of contention for videogame development programs, espe-
cially in the early-to-mid 2000s, was the lack of access to proprietary
game engines at most videogame education institutions. While some
schools were offered access to an engine by a local studio (in part due to
that studio hoping to develop a skill pool of potential employees), very
few students of this time had access to the tools or platforms of video-
game development actually used within the formal industry. Instead,
schools often had to make do with either hobbyist tools (such as Flash
or Gamemaker), or modding or level editing tools, such as the Starcraft
(Blizzard, 1998) level editor. Videogame development education during
this time was either highly technical (training the programmers who might
one day develop a proprietary engine or custom tools), or highly theoret-
ical (training the videogame designers in theories of play and design but
with little access to the actual software or practices of the industry).

The emergence of Unity and its subsequent proliferation through
the Personal licence (with engines such as Unreal following suit) pro-
vides an unprecedented opportunity. Now, videogame development
degrees are able to teach the same software environment that is used by
the studios their students will potentially be seeking employment at. In
Australia in particular, the fact that much of the local industry is already
using Unity places pressure on students to have that skill. Further, due
to the licensing freedoms of the Personal licence, students are able to
distribute, and perhaps even sell, their own student projects produced
in Unity (including Asset Store projects)—an opportunity that was
less feasible when using hobbyist tools or proprietary level editors. In
a number of schools we conducted interviews at, this manifested as an
entrepreneurial approach to videogame development education where
students were being trained less for future employment, and more
for starting their own studios and producing their own videogames.
While the accessibility of commercial game engines affords this

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  91

pedagogical approach, in Australia, where jobs simply do not exist for
all graduates, the ‘involuntary entrepreneurism’ (Oakley 2014) of ‘going
indie’ is seen as both necessary and appealing. In this way, the intro-
duction of commercial game engines to tertiary spaces and the foster-
ing of individualized workflows they afford (see Chapter 3) are not only
empowering students, but also reconfiguring how the process of videog-
ame-making is understood and perceived by students.

Unsurprisingly, like other cultural software, Unity Technologies views
schools as primary sites for the enrolment of new constituents into their
software ecosystem. As illustrated in the previous section, if a student
learns Unity, one expects it is Unity that then becomes the default choice
for that student’s future videogame projects. While Unity once offered
an explicit education licence that included a permanent ‘for educational
use only’ waterstamp in the corner of published content, Unity’s ‘for
students’ page now redirects students to the same Personal licence as is
used by many hobbyists and commercial developers. Educators, mean-
while, are directed towards a repository of resources suggesting ways to
teach Unity in the classroom. For several years, Unity also ran a student
ambassador program wherein students from different Universities were
elected to be Unity champions within their schools. We spoke with one
student ambassador who described the role as ‘not quite marketing, but
like they [Unity Technologies] were trying to catch students at an early
stage, and get them using it [the Unity game engine], so then they’re
“Unity for life”’.

Educators often voiced concerns about students becoming ‘just’
Unity developers. There was typically a sense that only being able to
use Unity was insufficient for being proficient in either videogame
design or videogame programming. Instead, it was seen as crucial that
students were encouraged to adapt to a range of tools and environments,
so they could, as one educator put it, ‘learn how to learn an engine’.2

2 A representative of a technical college in the Netherlands, who was interviewed for an
adjacent project by the authors, discussed taking the opposite approach. They had renamed
their degree from ‘videogame development’ to ‘Unity development’. While the degree
program still largely focused on videogame development skills, the school representative
we spoke to noted that they had identified more extensive employment opportunities for
Unity developers, beyond the videogame industry. According to them, other industries,
including mining, advertising, the military, and freight shipping, were increasingly looking
for developers specifically skilled in Unity. There are some statistics to back up this claim,
such as Linkedin’s 2017 ‘U.S. Emerging Jobs Report’, which situates ‘Unity developer’ as
the 7th most in-demand job title among US employers (Economic Graph Team 2017).

92  B. NICOLL AND B. KEOGH

The further anxiety here is that if students only learn how to use Unity,
then they may become perpetually stuck within Unity’s ecosystem (see
also Deterding and O’Donnell 2016: n.p.)—in the terms of the previous
chapter, students risk becoming competent in Unity’s design standards,
but not videogame development’s design principles. For example, Grace,
whose videogame The Haunted Island we discussed in the opening anec-
dote to this book, described receiving criticism from her teachers for cre-
ating projects that too closely resembled ‘Unity games’. This is despite
the fact that Grace deliberately and explicitly embraces the grain of Unity
as a design decision. We also spoke with a software engineer who was
interviewing several University graduates for a position as technical art-
ist in his studio. ‘I’ve interviewed a lot of people now’, he explained
to us, ‘and a lot of them—most of them, in fact—say “I love to know
what’s going on. I love to understand what’s happening”. And as soon
as I probe a little bit deeper, I’ll realize that they haven’t actually gone to
any lengths to understand what’s going on’. In his view, most people are
‘happy to leave Unity as a black box’, which he found troubling. Other
employers, however, saw Unity’s proliferation in schools as an unequivo-
cal benefit, as graduates could be more easily assimilated into the Unity-
inflected workflows of their studio.

In some of the schools whose educators we spoke to, Unity was
mandated by the course curriculum. Many others, however, worked to
remain ‘engine agnostic’ in their curriculum, teaching transferable pro-
cesses and concepts and expecting students to spend their own time
gaining familiarity with a game engine. Cherie Davidson described her
role as an educator as assisting ‘self-guidance’ and ‘self-teaching’:

I spend most of my time talking to [students] about what they want to
do. Walking them through how they think they could achieve it with the
engine. More than teaching the ‘how to do it’, it was more like ‘how
can you find the community and the APIs [Application Programming
Interfaces] that already exist? How can you find that information yourself?’

This approach, however, is only possible due to the extensive networks
and resources available around commercial game engines such as Unity
and Unreal. Indeed, even when Unity is not required by the curriculum,
it still commonly becomes the default due to its sheer ubiquity—it is the
engine that other students on team projects are most likely to have expe-
rience in, and it is the engine that educators are most likely to have prior
experience with.

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  93

Thus, ensuring students ‘learn how to learn an engine’ both
future-proofs students against Unity’s future business decisions and
unpredictable platform redesigns, and also facilitates an entrepreneurial
and self-governing approach to videogame development that directly
aligns with and is easily absorbed by Unity’s own circuit of governance.
Students (and by extension, developers) become responsible for their
own skill education—required to ‘self-guide’ and ‘self-teach’—in lieu of
institutional support structures of upskilling, mentorship, and explicit
promotional pathways. In the videogame development curriculum, the
commercial game engine discursively strengthens an ideology of creative
professionalism that ‘is now understood in terms of entrepreneurism’
and which reconfigures creative practice pedagogies (including those of
the school) as ‘the economization of imagination, the marketization of
creativity’ (McRobbie 2016: 76). In the videogame school, mandated
or not, Unity instils literacies of self-governance that reinforce Unity as
the default option, as not really a choice at all.

Unity in the Enthusiast Discourse

Throughout this book, we have made reference to anxieties surround-
ing Unity’s bid to democratize videogame development. These anxi-
eties are most dominantly visible within core gamer discourses—in, for
example, Jim Sterling’s videos—but, as the next chapter will discuss, they
also impact professional development communities and digital storefront
policies. For gamers, the concern loosely centres on issues of authen-
ticity, and the policing of a cultural field once perceived as subcultural
but that is now considered more accessible and diverse. For developers,
the concern is that a high quantity of low-quality videogames on digi-
tal storefronts will lower the discoverability of their own videogames, as
well as erode consumer trust in the videogame industry generally. For
those external to core gamer and videogame industry discourses, both
concerns might seem somewhat overblown and counterintuitive. While
one should of course be critical of any one cultural software company
monopolizing a cultural field (as we have attempted to be in this book),
surely more people having access to the means to both create and pro-
duce videogames can only create more diversity and choice for players?
Furthermore, who gets to decide that all videogames produced beyond
a traditional studio model or without a commercial amount of polish
are of ‘poor’ quality in the first place? Surely, too, the ‘indiepocalypse’

94  B. NICOLL AND B. KEOGH

that developers fear—the notion that there are ‘too many games and too
many developers’ (Wright 2018: n.p.)—is, for better or worse, a real-
ity to be expected for any aspiring cultural worker in any field of cul-
tural production? The idea that there are ‘too many bands’, for instance,
would seem absurd. Indeed, many of the anxieties surrounding Unity
seem to be symptomatic of the fact that videogame development is
becoming more like any other field of cultural production. Yet, as Pierre
Bourdieu (1983: 323) notes, one of the key constituting tensions in any
field of cultural production is the struggle over who gets to define just
what the field is. We are seeing this play out vividly in the field of video-
game production. As a wider range of people gain access to the ability to
both distribute and develop videogame works—in no small part through
Unity’s ‘democratizing’ effects—new genres emerge, and this leads to
debates as to what counts as a ‘real’ videogame at all.3 As such, we end
this chapter with a consideration of the broader cultural literacies that
orbit Unity and the process of videogame development more generally.
While such literacies do not necessarily have a direct impact on who is
able to use Unity, they are crucial to comprehend how Unity’s circuits
of cultural software are navigated by a wider range of constituents and
how works produced with this software are potentially perceived and
evaluated.

This requires us to understand where dominant conceptualizations
of the videogame field originated. The mid-1980s brought in a period
of ‘aggressive formalisation’ to the videogame industry that has more
recently been supplanted by a period of ‘intense in/formalisation’
(Keogh 2019). ‘Aggressive formalisation’ here refers to the period of
time in which proprietary game engines and restrictively curated distribu-
tion platforms cultivated a very specific image of what videogames ‘are’
and who they are for. A range of researchers looking at popular vide-
ogame discourses of this time have highlighted how videogame pub-
lishers and the enthusiast press (often hand-in-hand) manufactured an
imaginary ‘gamer’ identity interested primarily in systemic challenges,
technological spectacle, and a large quantity of ‘content’ (Shaw 2012;
Kirkpatrick 2015; Arsenault 2017; Cote 2018; Nicoll 2019). However,
as the normalization of digital distribution and accessible commercial
game engines took hold in the 2000s, broader fields of both creators and

3 See Harvey (2014: 100) for a discussion of this issue in relation to ‘the legitimacy of
twine games’ created primarily by LGBTIQA+ videogame-makers.

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  95

audiences have opened up beyond the traditionally hegemonic and mas-
culine ‘gamer’ cultures. It is this shift to intense in/formalisation—where
clear distinctions between ‘amateur/professional’, ‘artist/employee’, and
even ‘player/developer’ have crumbled away—where a number of cul-
tural and political conflicts have emerged in videogame discourse. This
was most notable in the misogynistic harassment campaign ‘gamergate’,
which coalesced around gamer anxieties directed at videogames created
by both LGBTIQA+ and gender-diverse videogame developers (see Shaw
and Chess 2015).

Most directly relevant to audience literacies around Unity is how this
period of aggressive formalisation instilled particularly technologically
deterministic conceptualizations of the process of videogame develop-
ment. As several firms including Nintendo, Sony, and Sega competed
for market dominance through the 1990s, the ‘console wars’ became
defined by (perceived or actual) technological innovations, such that
the wheel of videogame history was itself conceptualised through the
metaphor of a series of self-contained technological ‘advancements’
or ‘generations’ (Therrien and Picard 2016). As a result, the quality
of a videogame became intrinsically linked to its technological foun-
dations—whether that be a game engine or console. For example, the
UK’s Official Nintendo Magazine compared the three-dimensional
Castlevania 64 (Konami Kobe, 1999) for the Nintendo 64 with
Castlevania: Symphony of the Night (Konami, 1997) for Sony’s compet-
ing PlayStation, noting that ‘the N64’s miles ahead of the 32-bit com-
petition […] Whereas the N64 version features fully 3D characters and
backgrounds, along with dazzling lighting effects, the PlayStation title
is a flat, 2D platform game where the tiny hero has to fight big, cheesy
monsters. No comparison, really…’ (Clays 1997: 4). Here, 3D innova-
tions are perceived as inherently better than the seemingly old-fashioned
and technologically unimpressive 2D art. By a technologically determin-
istic metric, the videogame being released tomorrow will always be better
than the videogame that was released yesterday, and an enthusiastic con-
sumerbase is held in perpetual anticipation for ‘the next big thing’.

In his platform study of Nintendo’s Super Nintendo Entertainment
System, Dominic Arsenault (2017) looks at the marketing discourses
used by Nintendo specifically to frame the technologies underpinning
its videogames, drawing a distinction between ‘technoliteracy’ and
‘technobabble’. While technoliteracy provides broader audiences with
‘access and proficiency in understanding the complexities of technology’,

96  B. NICOLL AND B. KEOGH

popular videogame discourses of this period instead ‘[used] techno-
babble to smash [readers] with complexity and leave them dazzled or
beaten senseless’ (Arsenault 2017: 80). As it formalised throughout
the 1990s, videogame discourse was defined not by a simple ignorance
of the complexities of videogame technology, nor solely by a straight-
forward technological determinism, but rather by a ‘brandishing of fac-
tual information and data without context’ (Arsenault 2017: 77). This
smokescreen of technobabble cultivated particular misunderstandings of
how videogame technologies work and how they intersect with the vid-
eogame development process. Technobabble ‘insidiously instill[ed] the
impression of knowledge in people, hence bringing them into double
ignorance—not knowing that they don’t know’ (Arsenault 2017: 80).
Despite videogame development and play cultures shifting dramatically
since the 1990s, the above ways of talking about, thinking about, and
evaluating videogames continue to linger in the cultural discourses that
surround videogame production. One particularly revealing contempo-
rary example was provided in 2013, when Sony representatives demon-
strated Killzone: Shadow Fall (Guerilla, 2013) on The Tonight Show
Starring Jimmy Fallon. The representative can be heard claiming that the
new console’s ‘eight gigabytes of the fastest unified memory […] gives
us space to develop these characters that you really care about’ (Hecker
2013: n.p.). Here, the available technology (provided without context) is
directly linked to the ability of developers to craft higher quality narrative
content.

If one requires ‘eight gigabytes of the fastest unified memory’ in order
to ‘develop these characters that you really care about’, then what does
that imply about the quality of videogames made in commercial game
engines such as Unity—engines that are readily available and much less
technologically exciting? Technobabble, as deployed by blockbuster
studios and console manufacturers—those who most benefit from tech-
nologically deterministic evaluations of videogame quality—instils a par-
ticular (il)literacy of the videogame development process among players
and critics. Consequently, now that more people more visibly make vide-
ogames in/formally—where the technology is rarely the most impressive
aspect of the project—their videogames seem technologically homoge-
neous even if they are diverse from a creative, thematic, or design per-
spective. Technobabble perpetuates a dominant centre and subordinate
margin of videogame development where those who continue to have
access to proprietary engines and programmer-oriented pipelines are

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  97

able to produce videogame works that are most readily perceived as
being of good quality and demonstrating good craftspersonship, while
the broader ecology of videogame developers ‘empowered’ by commer-
cial game engines such as Unity remain at the fringes, with their own
craftspersonship often dismissed as the simple reuse of copy-and-paste
prefabricated assets.

Thus, we can now understand how commentators such as Jim Sterling
are able to write off developers that take advantage of Unity’s compo-
nent-oriented development environment and affordance of iterative
design by using pre-existing assets in lieu of the resources to produce
them from scratch as ‘lazy’ or ‘no-bit chancers’. What might be impres-
sive about these videogames—their design, their narratives, their experi-
mentation with the common styles of videogame play—is overshadowed
by the common technology that they are enabled by. Following a period
of over a decade of tightly controlled and formalised videogame pro-
duction, a dramatic increase of amateur, marginal, experimental, and
derivative works comes to be seen as a direct challenge to the natural-
ized hierarchies of the field of videogame production. Different literacies
around the role and context of videogame development tools, including
game engines, directly impact how those tools—and the works produced
with them—circulate and are perceived. This puts into context why com-
mercial videogame developers using Unity feel pressured, as highlighted
in Chapter 4, to ‘go against the grain’ and to hide the ‘look and feel’ of
Unity. More broadly, the different ways that Unity is understood by its
users, educators, and students, as well as by a dominant gamer demo-
graphic, point towards the importance of understanding how and why
different constituents become enrolled in the ecosystem of a particular
circuit of cultural software. The varying literacies (as opposed to com-
petencies) held by these different constituents form specific ways of
knowing, feeling, and identifying, which in turn shape the identity of the
software in question as well as constituents’ attitudes towards it.

References

Arsenault, Dominic. 2017. Super Power, Spoony Bards, and Silverware: The Super
Nintendo Entertainment System. Cambridge: MIT Press.

Banks, John. 2013. Co-creating Videogames. New York: Bloomsbury.
Bourdieu, Pierre. 1983. “The Field of Cultural Production, or: The Economic

World Reversed”. Poetics 12: 311–356.

98  B. NICOLL AND B. KEOGH

Bridgstock, Ruth, and Stuart Cunningham. 2016. “Creative Labour and
Graduate Outcomes: Implications for Higher Education and Cultural Policy.”
International Journal of Cultural Policy 22 (1): 10–26.

Clays, Simon. 1997. “Return of the Vampire!” Nintendo Official Magazine 57:
4–5.

Cote, Amanda C. 2018. “Writing ‘Gamers’: The Gendered Construction of
Gamer Identity in Nintendo Power (1994–1999).” Games and Culture 13 (5):
479–503.

Deterding, Sebastian, and Casey O’Donnell. 2016. “Game Engines in Game
Education: Thinking Inside the Toolbox?” GDC Vault. https://www.
gdcvault.com/play/1023034/Game-Engines-in-Game-Education.

Economic Graph Team. 2017. “LinkedIn’s 2017 U.S. Emerging Jobs Report.”
Linkedin, December 7. https://economicgraph.linkedin.com/research/
LinkedIns-2017-US-Emerging-Jobs-Report.

Freedman, Eric. 2018. “Engineering Queerness in the Game Development
Pipeline.” Game Studies 18 (3). http://gamestudies.org/1803/articles/
ericfreedman.

Harvey, Alison. 2014. “Twine’ Revolution: Democratization, Depoliticization,
and the Queering of Game Design.” Game 3: 95–107.

Harvey, Alison. 2019. “Becoming Gamesworkers: Diversity, Higher Education,
and the Future of the Game Industry.” Television & New Media (OnlineFirst):
1–11.

Hecker, Chris. 2013. “Fair Use.” Youtube, March 29. https://www.youtube.
com/watch?v=kXnoW2SvQrQ.

Keighley, Geoff. 2014. “The Final Hours of Titanfall.” http://www.finalhour-
softitanfall.com/.

Keogh, Brendan. 2019. “From Aggressively Formalised to Intensely In/
Formalised: Accounting for a Wider Range of Videogame Development
Practices.” Creative Industries Journal 12 (1): 14–33.

Kirkpatrick, Graeme. 2013. Computer Games and the Social Imaginary.
Cambridge: Polity Press.

Kirkpatrick, Graeme. 2015. The Formation of Gaming Culture: UK Gaming
Magazines, 1981–1995. New York: Palgrave Macmillan.

kopas, merritt. 2015. Videogames for Humans: Twine Authors in Conversation.
New York: Instar Books.

McRobbie, Angela. 2016. Be Creative: Making a Living in the New Culture
Industries. Cambridge: Polity Press.

Mol, Annemarie. 2002. The Body Multiple: Ontology in Medical Practice.
Durham: Duke University Press.

Nicoll, Benjamin. 2019 (forthcoming). Minor Platforms in Videogame History.
Amsterdam, the Netherlands: Amsterdam University Press.

https://www.gdcvault.com/play/1023034/Game-Engines-in-Game-Education
https://www.gdcvault.com/play/1023034/Game-Engines-in-Game-Education
https://economicgraph.linkedin.com/research/LinkedIns-2017-US-Emerging-Jobs-Report
https://economicgraph.linkedin.com/research/LinkedIns-2017-US-Emerging-Jobs-Report
http://gamestudies.org/1803/articles/ericfreedman
http://gamestudies.org/1803/articles/ericfreedman
https://www.youtube.com/watch?v=kXnoW2SvQrQ
https://www.youtube.com/watch?v=kXnoW2SvQrQ
http://www.finalhoursoftitanfall.com/
http://www.finalhoursoftitanfall.com/

5  LITERACY: ARTICULATIONS OF UNITY ACROSS DEVELOPMENT …  99

Oakley, Kate. 2014. “Good Work? Rethinking Cultural Entrepreneurship.” In
Handbook of Management and Creativity, edited by Chris Bilton and Stephen
Cummings, 145–159. Cheltenham: Edward Elgar.

Shaw, Adrienne. 2012. “Do You Identify as a Gamer? Gender, Race, Sexuality,
and Gamer Identity.” New Media Society 14 (1): 28–44.

Shaw, Adrienne, and Shira Chess. 2015. “Reflections on the Casual Games
Market in a Post-GamerGate World.” In Social, Casual, and Mobile
Videogames: The Changing Gaming Landscape, edited by Tama Leaver and
Michele Wilson, 277–289. New York: Bloomsbury.

Therrien, Carl, and Martin Picard. 2016. “Enter the Bit Wars: A Study of Video
Game Marketing and Platform Crafting in the Wake of the TurboGrafx-16
Launch.” New Media & Society 18 (10): 2323–2339.

UNESCO. 2006. Education for All Global Monitoring Report: Literacy for Life.
Paris: United Nations Educational Scientific and Cultural Organization.

Vanderhoef, John. 2019 (forthcoming). Passion, Pixels, and Profit: The New
Creative Economy of Indie Game Production. Ann Arbor: University of
Michigan Press.

Warner, John. 2018. “It’s Time We Stopped Encouraging Indies.” Gamesindustry.
biz, October 2. https://www.gamesindustry.biz/articles/2018-10-02-its-time-
we-stopped-encouraging-indies.

Wright, Steven. 2018. “There Are Too Many Video Games. What Now?”
Polygon, September 28. https://www.polygon.com/2018/9/28/17911372/
there-are-too-many-video-games-what-now-indiepocalypse.

Yang, Robert. 2018. “What Is the Game University For?” Radiator, May 4.
https://www.blog.radiator.debacle.us/2018/05/what-is-game-university-
for.html.

Young, Christopher J. 2018. “Game Changers: Everyday Gamemakers and the
Development of the Video Game Industry.” PhD diss., University of Toronto.

Zagal, José P., and Amy Bruckman. 2008. “Novices, Gamers, and Scholars:
Exploring the Challenges of Teaching About Games.” Game Studies 8 (2).

https://www.gamesindustry.biz/articles/2018-10-02-its-time-we-stopped-encouraging-indies
https://www.gamesindustry.biz/articles/2018-10-02-its-time-we-stopped-encouraging-indies
https://www.polygon.com/2018/9/28/17911372/there-are-too-many-video-games-what-now-indiepocalypse
https://www.polygon.com/2018/9/28/17911372/there-are-too-many-video-games-what-now-indiepocalypse
https://www.blog.radiator.debacle.us/2018/05/what-is-game-university-for.html
https://www.blog.radiator.debacle.us/2018/05/what-is-game-university-for.html

101

Abstract  This chapter treats Unity’s slogan—‘democratizing videogame
development’—as a policy discourse and dispositif that functions to legit-
imize neoliberal modes of work and identity formation. It discusses vid-
eogame culture’s conflicted view of democratized development tools by
looking at the anxieties surrounding ‘asset flipping’ and the ‘indiepoca-
lypse’, both of which are often linked to Unity’s ‘democratizing’ effects.
It argues that people feel empowered by Unity not only because of the
tools it provides, but also because it appears to make a sustained, pol-
icy-driven commitment to democracy and equality in a political envi-
ronment where such a commitment is typically felt to be lacking. It
concludes by discussing alternative ‘grassroots’ game engines and by
pointing to further uses of the circuits of cultural software.

Keywords  Software culture · Platform governance · Asset flips ·
Indiepocalypse · Democratization of videogame development ·
Unity game engine

It is often argued that today’s platform and software companies are
supplanting many of the roles, services, and infrastructures once associ-
ated with public-oriented governance structures (Chun 2011; Gillespie
2017b; Plantin et al. 2018). Platforms such as Facebook and WeChat are
providing ‘free’ self-management tools in exchange for massive amounts
of personal data and, in the process, are becoming increasingly embroiled

CHAPTER 6

Governance: Unity’s Democratization
Dispositif

© The Author(s) 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6_6

https://doi.org/10.1007/978-3-030-25012-6_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25012-6_6&domain=pdf

102  B. NICOLL AND B. KEOGH

in democratic processes and political controversies. Likewise, by
providing media creatives with tools that promote self-sovereignty and
self-entrepreneurship, cultural software such as Unity and Photoshop
strategically position themselves to fill a void left by the erosion of state
welfare and cultural policy in Western countries. These developments
are having dramatic consequences for traditional ideas of democracy and
governance. Legislators are facing pressure to regulate what is variously
known as ‘platform capitalism’ (Srnicek 2016), ‘the platform society’
(van Dijck et al. 2018), and ‘the platformization of cultural production’
(Nieborg and Poell 2018), but these pressures run counter to neolib-
eral economic policies that favour deregulation and austerity. The pur-
pose of this chapter, which also serves as a conclusion to the book, is
to view Unity’s slogan—‘democratizing game development’—as a pol-
icy discourse that emerges from, and is consonant with, the above devel-
opments. The discourse of democratization drives Unity and its core
agenda, but it also performs political ‘work’ within videogame culture
more broadly, where it is met with mixed feelings. The challenge for any
piece of cultural software is to strategically manage, support, and gov-
ern these feelings in a way that serves to bolster the software’s network
effects.

Rather than asking whether Unity has truly democratized video-
game development, we are more interested in the effects of Unity’s
policy discourse on the values, norms, and literacies upheld by videog-
ame developers, critics, and players. Here, we are inspired by Nathaniel
Tkacz’s (2014) interrogation of the concept of ‘openness’ in relation to
Wikipedia. As Tkacz (2014: 32) observes, openness is a concept ‘whose
meaning is so overwhelmingly positive it seems impossible even to ques-
tion, let alone critique’, to the extent that

the open actively works against the development of a political language—
if, that is, we take the political to extend beyond questions of just gov-
ernance to the circulation and distribution of power and force, and take
politics to mean the distributions of agency in general as well as the con-
flicts and issues that emerge when antagonistic flows intersect. (Tkacz
2014: 33)

Indeed, it is ironic that many of today’s software companies—game
engine providers among them—present themselves as politically neutral
entities, given that they are very often the loci of our most fundamental

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  103

political crises and power imbalances. As Tarleton Gillespie (2017a: n.p.)
observes, the ‘platform’ metaphor, which is commonly used to describe
the major software companies of our era (and strategically used by these
companies to describe themselves), carries connotations of flatness,
openness, and neutrality. This obscures the fact that platforms are deeply
political entities that often mishandle their social and economic respon-
sibilities. Unity is not the only software tool that claims to have democ-
ratized something—indeed, many cultural software utilize what we call
a ‘democratization dispositif’ to justify their monopolizing and territori-
alizing tendencies—but it is a useful case study for analysing how this
dispositif can become mobilized as a means of generating power within
a software ecology. For Unity, the discourse of democratization serves a
particular socio-political purpose; it makes Unity seem normal, natural,
or taken-for-granted. Put simply, it disarms critique. To this end, we fol-
low Tkacz’s (2014: 3) lead in arguing for ‘a politics in the face of open-
ness—a politics in spite of openness’.

Hatred of Democratization: From ‘Asset Flips’
to ‘Indiepocalypse’

The industry and culture of videogames have a conflicted relationship
with—and, in extreme cases, an underlying hatred of—democracy. In
Hatred of Democracy, Jacques Rancière (2006) observes that efforts to
uphold or justify democratic ideals and practices of equality are often
premised on contradictory desires to undermine, govern, or weap-
onize democracy. In videogame culture, this contradiction plays out
in unique ways. Videogame culture is, as Christopher A. Paul (2018)
argues, largely built on a ‘meritocratic’ social order wherein raw talent
and hard work are believed to hold sway when it comes to determining
one’s position in the social hierarchy. In a meritocracy, those who man-
age to ascend the social hierarchy are said to do so solely by virtue of
their grit and determination, rather than by virtue of their social class,
educational background, race, gender, or identity. Systemic power imbal-
ances, institutional biases, and discriminatory practices are deemed irrel-
evant to one’s ability to attain just reward for their hard work and effort.
As Paul (2018) observes, meritocratic norms are very often replicated in
the narratives and play structures of videogames themselves—many vide-
ogames are, for example, premised on some variation of the archetypical

104  B. NICOLL AND B. KEOGH

‘rags-to-riches’ narrative, and place an extreme emphasis on technical
skill, competency, and competition.

As flagged in previous chapters, meritocratic norms are also brought
to bear upon the world of videogame production. Game engines such as
Unity have recently come under fire for precisely the same reasons they
are celebrated: for lowering the barrier of entry to becoming a videogame
developer and for enabling a wider variety of development skills, prac-
tices, values, and subject positions to proliferate in videogame culture.
Videogame culture’s ‘hatred’ of democracy is rarely as explicit as the term
hatred implies, but as Rancière (2006) maintains, hatred of democracy
often expresses itself through a seemingly banal and contradictory desire
to celebrate democracy while ensuring its supposed excesses are held in
check. Hatred of democratization in videogame culture stems from a
meritocratic belief that videogame development is a specialized craft that
requires a certain degree of skill, knowledge, and hard work, rather than a
field of cultural production that anyone can participate in.1

A recent example of this meritocratic ideology at work—and one that
speaks directly to the mixed reception of Unity’s policy discourse—is the
growing backlash against videogames built from prefabricated assets. In
2017, videogame company Valve began cracking down on ‘fake games’
being sold on its online distribution platform, Steam. Valve’s crite-
ria for identifying fake games are somewhat ill-defined,2 though key
offenders include videogames made from prefabricated assets, down-
loaded from online asset stores such as Unity’s Asset Store or Epic’s
Unreal Marketplace. Several YouTube pundits—perhaps the most
prominent being Jim Sterling, whose videos were discussed in previous
chapters—took to labelling these videogames asset flips. Asset flipping, as
already defined, is a derogatory expression describing a videogame cob-
bled together from prefabricated assets and derivative design techniques,
whose perceived main purpose is to turn a quick profit for its develop-
ers. Having sought consultancy with several high-profile YouTubers,
Valve set out to revise its gatekeeping protocols and quality assurance

1 This is not to say that Unity developers are unskilled; on the contrary, and as outlined
in previous chapters, Unity development affords a wider range of creative skill sets to access
the craft of videogame development than has traditionally been allowed.

2 The company implemented a ‘confidence metric’ for gatekeeping purposes that, accord-
ing to a May 2017 blog post, ‘is built from a variety of pieces of data, all aimed at separat-
ing legitimate games and players from fake games and bots’ (jonp 2017: n.p.).

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  105

baseline, with the aim of stemming the distribution of fake games and
asset flips on its Steam webstore. Perhaps the most high-profile video-
game to be accused of asset flipping is PlayerUnknown’s Battlegrounds
(PUBG; PUBG Corporation, 2017), an online ‘battle royale’ videogame
where players are parachuted into multiplayer maps and pitted against
each other in last-person-standing style deathmatches. PUBG was built
using the Unreal engine, which, like Unity, has an asset store called the
Unreal Marketplace. Some players noticed that several 3D models used
in PUBG’s multiplayer maps bore a resemblance to certain prefabricated
assets available on the Unreal Marketplace. Responding to criticism from
online commentators, PUBG’s communications director, Ryan Rigley,
defended his team’s decision to use prefabricated assets. ‘That’s the only
way you can spin out a game fast, and for a reasonable price’, he wrote
on the PUBG subreddit (PUBG_Riggles 2018: n.p.). Rigley quotes one
of the videogame’s lead artists as adding: ‘Why should one of my artists
spend two weeks on a generic sculpt if they could instead spend that two
weeks adding real value for players elsewhere? How many times should
a telephone booth be modelled? How many times do we gotta sculpt a
cash register?’ (PUBG_Riggles 2018: n.p.).

While the act of using store-bought assets instead of investing the
resources and labour to produce bespoke ones is seen here by players
as a sign of incompetency, laziness, or profiteering, Rigley’s response
instead positions it as a way to avoid unnecessary repetition so as to
focus resources and labour towards aspects of development considered
more crucial. John Vanderhoef (2019: n.p.) reconfigures the act of asset
flipping as a more productive act of ‘asset poaching’, as a ‘bricolage
approach to gamemaking [that] privileges the accessibility of cultural
production in the digital game space’. A high-profile Unity-developed
videogame that relies heavily on poaching prefabricated assets—albeit
one that prompted a very different kind of reaction in the videogame
community—is Getting Over It with Bennett Foddy (Foddy, 2017).
Launched on Steam in October 2017, Getting Over It has the player
scaling a mountain of assorted objects and paraphernalia, using only a
Yosemite hammer (see Fig. 6.1). Getting Over It is deliberately chal-
lenging, even masochistic. Players are punished for making even minor
mistakes, which occur frequently thanks to a somewhat unconventional
physics system and sensitive mouse controls. Of note, however, is that
Getting Over It deliberately embraces a ‘fake game’ (or, more accurately,
‘b-game’) aesthetic. The mountain players are tasked with ‘getting over’

106  B. NICOLL AND B. KEOGH

is constructed from seemingly random art assets—household furniture
items, gardening tools, construction site equipment, and so on—most
of which were obtained for free from various asset stores; a handful of
which were purchased; and an even smaller minority of which were cus-
tom-made. In the videogame’s narrated commentary, Bennett Foddy,
sole developer of Getting Over It, offers the following insight into his
design philosophy:

For years now, people have been predicting that games will soon be made
out of prefabricated objects, bought from a store, and assembled into a
world. And for the most part, that hasn’t happened, because the objects
in the stores are trash. I don’t mean they look bad or that they’re badly
made, although a lot of them are. I mean they’re trash in the way food
becomes trash as soon as you put it in the sink […] Over time, we’ve
poured more and more refuse into this vast digital landfill we call the inter-
net. It now vastly outnumbers and outweighs the things that are fresh
and untainted and unused. When everything around us is cultural trash,
trash becomes the new medium, the lingua franca of the digital age. You
can build culture out of trash, but only trash culture: B-games, B-movies,
B-music, B-philosophy. Maybe this is what digital culture is. A mon-
strous mountain of trash, the ash heap of creativity’s fountain. A landfill of
everything we ever thought of in it. Grand, infinite, and unsorted.

Fig. 6.1  Screenshot of Getting Over It with Bennett Foddy (Foddy, 2017). By
permission of Bennett Foddy

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  107

In an interview published on the website VentureBeat, Foddy reflects
on the growing vitriol directed at poached assets. He argues that Valve’s
crackdown on ‘fake games’ risks further marginalizing ‘people making
games that just do not neatly fit into orthodox videogame genres’, sug-
gesting that ‘a few of the people most vocally calling for quality control
would not mind at all if those [unorthodox] games were eliminated from
the market’ (in Grubb 2018: n.p.).

The meritocratic norms informing attitudes towards asset poaching
are also manifest in the ‘indiepocalypse’, discussed in previous chapters.
The indiepocalypse anxiety of there being ‘too many games and too
many developers’ is stoked by prophetic warnings of a videogame indus-
try oversaturated with videogames made by small-to-medium-sized stu-
dios and indies struggling to make ends meet (see Wright 2018: n.p.).
Several of our respondents linked this oversaturation to the appar-
ent excesses of democratized videogame-making tools and distribution
platforms. One of our respondents speculated that the ‘accessibility or
openness of engines’ will be the ‘biggest thing that disrupts the indus-
try in the future’, specifically in terms of ‘the amount of people getting
in to [videogame development] and how that’s going to affect funding,
how it’s going to affect the amount of the games out there and markets
being flooded or markets closing themselves off to be more curated’.
These anxieties stem from the fact that, in recent years, videogame
development has been restored3 to something of a folk craft, akin to
making music or writing poetry (cf. Yang 2017). Debates about there
being ‘too many games and too many developers’ are symptomatic of a
worldview that perceives videogames as economic objects that exist pri-
marily for the purposes of satisfying consumer desires and generating rev-
enue, as opposed to cultural objects that exist because people have the
means—and the desire—to make them. It is also plausible to argue that
the oversaturation of content can be attributed to the curatorial strate-
gies (or lack thereof) of the ‘cultural intermediaries’ responsible for gate-
keeping—Valve’s Steam, Apple’s App Store, Google’s Play Store, and so
on—rather than the tools that enable content to exist (see Parker et al.
2018: 1964). Nonetheless, it is not our intention to dismiss develop-
ers’ concerns over the alleged ‘indiepocalypse’. For many, the indiep-
ocalypse represents a threat to livelihood—the struggle to strike success

3 As discussed in Chapter 1, videogame development was, up until the 1990s, a hobbyist
and oftentimes informal practice.

108  B. NICOLL AND B. KEOGH

in a market that is undeniably competitive—rather than a reflection of
meritocratic ideologies as such. That said, it is clear that many videog-
ame developers, critics, and players are struggling to come to terms with
the redistribution of power that may result from a more ‘democratized’
landscape of videogame development. Furthermore, the notion that this
redistribution of power will make it more difficult to make videogames
in an economically sustainable manner suggests that ‘democratizing’ vid-
eogame development also brings it in line with a creativity dispositif that
normalizes self-governance, entrepreneurship, and unpaid creative labour
(McRobbie 2016).

In part due to the growing popularity of game engines such as Unity,
videogame development is no longer a niche sub-field of software devel-
opment, but rather a field of cultural production that, as illustrated in the
previous chapters, is articulated to multiple circuits of meaning-making.
Like any field of cultural production, the videogame-making ecology
consists largely of people who have little or no expectation of making
money from the things they produce. Instead, developers are increas-
ingly expected to find innovative, entrepreneurial, and personalized ways
of developing their careers without relying on ongoing employment,
welfare support, or even cultural policy aimed at promoting growth in the
creative sector. It is in this environment that Unity’s alleged commitment
to democratization and equality takes on such an immense appeal, while
simultaneously functioning as a source of anxiety for many.

Unity’s Democratization Dispositif

People feel empowered by Unity not only because of the tools it pro-
vides, but also because it appears to make a sustained, policy-driven
commitment to democracy and equality in a political environment
where such a commitment is typically felt to be lacking. There are mul-
tiple theories explaining Unity’s rapid ascension to a quasi-monopolis-
tic dominance, but one, perhaps under-acknowledged explanation is
that the company has leveraged the symbolic power of democratization
at a time when developers face increased vulnerability and precarious-
ness because of, for example, the erosion of state welfare. This can be
seen not only in the engine’s accessibility, or even in the company’s deci-
sion to provide ‘free’ licences for its core software, but also in its efforts
to cultivate an affective community—one that builds on long-standing
‘communitarian practices’ in the independent development communities

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  109

(Guevara-Villalobos 2011: 3)—through extensive investment in educa-
tion, events, and support. Ultimately, in Morgan’s words, Unity carries
the promise that a videogame ‘built by two, four, five people [can com-
pete] on Steam alongside games that were built by 400 or 500 people’.

Unity’s commitment to accessibility, low-cost software, and affective
community creates an affective space where developers are granted a slight
degree of social security to explore possibilities for self-entrepreneurship
in what would otherwise be a career path fraught with risk and uncer-
tainty. This creates what Angela McRobbie (2016) calls a ‘creativity dis-
positif’. The creativity dispositif refers to the ‘toolkits, instruments and new
entrepreneurial pedagogies’ that encourage prospective creative workers
to pursue work in the media and design sectors (McRobbie 2016: 86). In
McRobbie’s (2016: 34–35) words, the creativity dispositif

oversees novel forms of job creation (in times of both unemployment
and under-employment), the defining features of which are imperma-
nent, short-term, project-based or temporary positions; it orchestrates an
expansion of the middle classes in the light of the policies adopted by most
national governments in recent years to increase the numbers of students
attending universities and art colleges and at the same time it supports
the creative activities of this arriviste middle class, allowing them to act as
guinea pigs for testing out the new world of work without the full raft of
social security entitlements and welfare provision that have been associated
with the post-Second World War period.

The creativity dispositif supports a new kind of ethos for creative
workers: one where people are encouraged to adopt strategies of
self-entrepreneurship in the absence of welfare support; where, in one
respondent’s words, user-friendly software tools ‘give everyone the oppor-
tunity to create value where there was no value before’; and where higher
education is restructured to help students find their niche in the risk econ-
omy of creative work. Riffing on McRobbie’s term, Unity Technologies’s
governance structure can be understood as a democratization dispositif
for the prospective Unity developer. The very notion of ‘democracy’ is, as
political philosopher Ernesto Laclau (2007 [1996]) establishes, an ‘empty
signifier’ capable of facilitating a multiplicity of contradictory demands
and subject positions, meaning that it can be deployed in almost any dis-
cursive context to galvanize support and achieve a hegemony. As discussed
earlier, software companies often deploy terms such as ‘democratization’

110  B. NICOLL AND B. KEOGH

and ‘openness’ in their marketing strategies for these exact purposes
(Tkacz 2014). As several of our respondents made clear, democracy can
be a sensitive topic in a cultural context where an underlying ‘hatred of
democracy’ (Rancière 2006) has taken root in ostensibly democratic soci-
eties. For Unity, ‘democratization’ facilitates a multiplicity of promises—
the promise of creative freedom, self-publishing, community, openness,
and entrepreneurship—that together function to make videogame devel-
opment seem like an accessible and exciting career path.

Democratization is a powerful, mobilizing, and oftentimes-sensitive
concept in videogame development (see Harvey 2014). Whenever
democratization came up in our interviews—and it often did,
unprompted—its status as an empty signifier became clear. Respondents
linked democratization to accessibility; versatility; empowerment; a diver-
sification of content and culture; a recognition of the labour of artists
and designers as opposed to just programmers; self-publishing; interfaces
that are ‘creative-friendly’ and ‘visual’; the open sharing of knowledge;
freedom to create and sell products on the Asset Store; and care and
community. Yet, democratization was also linked to contradictory feel-
ings of ‘a lot more content and a lot more competition’; homogenized
design practices; the threat of monopolization; Silicon Valley ‘blue-sky’
ideology; and the ongoing presence of ‘computer science baggage’ in
ostensibly creative-friendly design tools. One participant even went so far
as to describe Unity’s bid to democratize development as ‘absurd’:

Democracy would imply that the wider world would decide who’s running
Unity, but they don’t […] I don’t think there’s a purer example of [hierar-
chy] than in software development […] If your project is big enough, you
have a tree structure of people in charge […] So, with Unity, are [Unity’s
key stakeholders] saying that if people start complaining about them, that
they can just be voted out of the company? Of course they’re gonna main-
tain control of Unity. They invented it, they run it. I don’t really under-
stand what democratizing game development is meant to mean.

Respondents often prefaced these and other concerns by first signal-
ling their faith in Unity’s policy discourse. Most of our respondents—
from students to industry professionals—regarded Unity Technologies’s
commitment to democratization not simply as a marketing slogan, but
rather as an underlying political orientation that aligned with their per-
sonal beliefs, values, and subject positions. Several respondents expressed

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  111

concern that being critical of Unity would come off as overly negative,
given the company’s commitment to democratization and its covenant
of good faith with the community.4 In this way, Unity’s democratization
dispositif can be understood as a kind of governance mechanism; one that
expands the engine’s ecology to encompass not only a suite of software
tools but also a collection of positive thoughts, feelings, and affects that,
once enclosed in the system of governance, can be converted into capital.

As discussed throughout this book, Unity’s bid to democratize
development is consonant with a broader neoliberalization of work
and subjectivity in digital culture. For Chun (2011: 8), the discourses
of empowerment that underpin software culture—for example, Unity’s
discourse of democratization or Wikipedia’s discourse of openness—
are premised on the notion that ‘the worker does not simply own his/
her labor, but also possesses his/her own body as a form of “human
capital”’. Cultural software enrol media creatives in social/affective eco-
systems where people are encouraged to become entrepreneurs of them-
selves (cf. Foucault 2008: 226) and where creative workers become
‘highly reliant on informal networking but without the support of those
underpinned by any institutional “trade association”’ (McRobbie 2002:
519). Along these lines, one of our respondents described game engines
as ‘platforms for anyone to make a living, sharing pieces of work’. As he
put it,

You could look at this game engine thing as creating new parts of the
economy. Because, you know, the economy is human labour. Money is cre-
ated from the value people bring. And to make value, you need an oppor-
tunity. And these game engines give everyone the opportunity to create
value where there was no value before.

According to a 2017 ‘U.S. Emerging Jobs Report’ published by
LinkedIn, ‘Unity developer’ was the 7th most in-demand job title
among North American employers, and the only entry among the top-
ten searches identified to feature a company’s name (Economic Graph
Team 2017). Referring to this statistic in a keynote address given at

4 This suppression of ‘bad affect’ is a hallmark of creative entrepreneurship in neoliberal
capitalism, where, as McRobbie (2016: 25) puts it, ‘presentation of self is incompatible
with a contestatory demeanor. Personal angst, nihilism or mere misgivings […] must be
privately managed and, for the purposes of club sociality, carefully concealed’.

112  B. NICOLL AND B. KEOGH

the 2018 Game Developers’ Conference (GDC) in San Francisco to a
room full of Unity developers, John Riccitiello remarked that ‘we live in
a time when there are all sorts of theories about what creates employ-
ment. And my answer is: it’s you’ (Unity 2018: n.p.). Democracy is a
term that has been ‘dearticulated’ from political discourses and ‘rearticu-
lated’ in software culture to neoliberal discourses of self-entrepreneurism,
self-sovereignty, and self-governance (see Hall 1986; cf. D’Acci 2004:
435–435). In the process, the hegemonic meaning of democracy has
shifted, such that ‘democratization’ has become a signifier that nat-
uralizes neoliberal modes of work and identity formation. When
Riccitiello celebrates an audience of Unity developers as, first and fore-
most, ‘job creators’, he personifies Unity’s democratization disposi-
tif that rationalizes and individualizes cultural work under neoliberal
capitalism and which frames corporate strategies of enrolment as social
benevolency.

Democratization Beyond Unity

There is no denying that Unity has made the craft of videogame devel-
opment more accessible, and that it is contributing to a diversification of
the culture and industry of videogames. Unity has provided a gateway
to 3D videogame development in a way that no other software tool has
done previously. Many amateur and independent developers have utilized
the ‘free’ resources provided by Unity to rethink how videogames can
be made and played. Nonetheless, while Unity has provided a platform
for diversity and accessibility in videogame development, it is impor-
tant to recognize that diversity and accessibility do not exist because of
Unity. Cultural theorists have routinely dismissed this kind of thinking
as technologically deterministic. Fringe development communities and
cultures have always found ways to make videogame development more
accessible, diverse, and equitable. In fact, if Unity can be said to have
democratizing effects, then these effects are only possible through what
Paul du Gay et al. (1997: 52) call an ‘articulation of production to con-
sumption’—that is, Unity’s toolset only becomes democratizing once
it is brought into contact with the productive energies of its collective
user base. Indeed, as discussed in Chapter 2, Unity’s very conditions of
existence are predicated on long-standing (albeit largely informal) histo-
ries of hobbyist, modding and grassroots videogame-making tools and
practices.

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  113

Moreover, while Unity may have some claim of legitimacy in making
the tools of videogame development more accessible, it is important to
clarify the limits of its supposedly democratizing effects. Unity has not
democratized employment opportunities, nor has it addressed tenden-
cies within studio environments to turn a blind eye towards issues of
precariousness, toxicity, burnout, and exploitation; the same goes for the
industry’s long-standing ambivalences towards collective organisation.
Granted, Unity’s mission statement is not ‘democratizing workplace pol-
itics’, but it is worth drawing attention to the neoliberal values under-
pinning its specific vision of democratization. Unity’s democratization
dispositif displaces the task of labour reform onto self-governing Unity
users, rather than the dominant market actors and institutional structures
within whose remit these power imbalances first originated. Moreover,
Unity Technologies’s long-term business plan is opaque, meaning that it
is difficult to get a sense of when and how its business model will change
and what the ramifications of these changes will be for its users. At pres-
ent, Unity’s software and licensing structures are subject to frequent
updates—updates that can have significant ramifications for its user base.
As established, this user base consists not only of videogame creators but
also of Asset Store developers and contributors to community forums,
whose support labour is the lifeblood of the engine. We do not want to
suggest that these developers have been somehow ‘duped’ into using
the tool, or that they do not have a critical grasp on their own videog-
ame-making practices. On the contrary, our respondents were often well
aware of the critical issues raised throughout this book, but nonetheless
viewed Unity as a significant step forward from the proprietary engines
that once stifled the field of production.

Before Unity established its democratization dispositif, there already
existed a developer counterculture that, as discussed in Chapter 2, had
made long-standing aggravations for ‘democratization’ in the culture
and industry of videogames, if we understand democratization to refer
broadly to practices of equality. Members of this counterculture sought
to overcome the technological barriers to videogame development and,
in the process, to question the institutional logics of the triple-a indus-
try. Since that time, however, the concept of democratization has been
dearticulated from its countercultural origins and absorbed into the
democratization dispositif, where it now functions as a policy discourse
for companies such as Unity Technologies. However, it is important
to acknowledge that videogame-making countercultures continue to

114  B. NICOLL AND B. KEOGH

produce new kinds of technologies, techniques, and subjectivities that
elude, confound, or occasionally short-circuit (that is, draw productive
energy from) dominant platform and software ecologies. These include,
for example, various grassroots game engines and videogame-making
communities, such as those associated with Twine, Bitsy, and Pico-8.
As discussed in previous chapters, these grassroots engines are created
and maintained by individuals and communities, and either explicitly or
implicitly resist the typical logics of governance and control that engines
such as Unity hold over videogame development cultures. Their creators
are rarely profiting from the engines and are often reliant on the engine’s
community for ongoing support, resources, and maintenance.

Bitsy, for instance, is a small game engine by Adam Le Doux that
facilitates the creation of small, 2D, story-driven videogames. Its active
online community develops expansions for the engine (including fea-
tures such as audio implementation), produces zines of new videogame
releases, maintains a wiki, and holds monthly ‘game jams’ to prompt the
creation of more Bitsy games. If development and distribution platforms
such as Unity, Unreal, and Steam work to homogenize, govern, and
regulate particular aspects of the formalized videogame industry, then
grassroot engines imagine a plurality of communal production cultures
at the fringes of the videogame industry beyond these jurisdictions. Like
Unity, grassroots game engines afford specific workflows and grains, as
discussed in Chapter 3. However, whereas the dominant engines strive
for a perception of neutrality where they are ‘rewarded for facilitating
expression but not liable for its excesses’ (Gillespie 2010: 356), grass-
roots engines are explicitly non-neutral in their politics and affordances.
They do deliberately what dominant engines pretend not to: promote
particular ways of making videogames and being videogame-makers.
Grassroots engines provide alternative spaces of affective intermediation,
offering open, community-driven toolsets that utilize the ‘platform logic’
for expressive, communal, and subversive (rather than monopolistic)
purposes. It is also important to note that these grassroots engines are,
on the whole, accessible to non-programmers and everyday creators in
a way that even Unity is not. As discussed in Chapters 4 and 5, Unity is
experienced as democratizing primarily for those who already possess an
understanding of videogames, videogame culture, and the language of
computing—what Graeme Kirkpatrick (2013: 72) calls the ‘gamer hab-
itus’—rather than more interdisciplinary creatives who might opt to use
Unity as one among many cultural software tools.

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  115

The growth of grassroots engines is proof that the people who
comprise videogame-making communities are more than capable of
shaping and, indeed, determining social, cultural, and technological
change, without the bestowing of democracy from a company such as
Unity Technologies. In a short manifesto titled ‘KILL UNITY; WE
ARE ENGINES’, videogame developer and academic Robert Yang
(2018: n.p.) writes,

No one way of making and doing cultural work should have such a
monopoly and stranglehold on an entire creative community […] This
[manifesto] is a call to build more tools, more frameworks, more engines,
more ways of doing and thinking about games and play […] Why can’t
you paint a game by singing, why can’t you breed and mutate 3D models,
why can’t you sculpt an AI? […] Kill Unity, death to Unreal; for we are
engines.

Although Yang’s (2018: n.p.) manifesto is deliberately tongue-
in-cheek—he notes that he ‘[doesn’t] actually want to kill anyone, and
[has] been using Unity for years’—it touches on a fundamental truism:
in software culture, bodies—rather than tools—are engines of capital and
creativity. The alleged ‘democratization’ of videogame development
is premised on a powerful belief in technological determinism—that is,
the notion that tools, rather than people, are agents of social change.
Yet, Unity’s success as a low barrier to entry videogame-making tool is
less a result of its technical affordances and more of its ability to stra-
tegically build on (and, in the process, to interpellate and erase [Vogel
2017]) existing grassroots tools, practices, and communities. Moreover,
as discussed in Chapter 2, one of the main reasons Unity has been able
to rapidly scale up is because of the (oftentimes invisible) support labour
of its various developer communities, whose members have contributed
assets and plugins to the Asset Store, formed online communities, and
created online tutorials for inexperienced users. The circuits of cultural
software associated with Unity function to configure and mobilize these
spaces of affective intermediation and make them serviceable and legi-
ble to Unity’s platform ecology. Yet, these tools, practices, and commu-
nities existed long before Unity and will continue to exist after Unity.
The challenge for Unity developers, then, is to realize the democratiz-
ing potentials latent in their own videogame-making activities, which are
articulated, but not reducible, to the Unity engine.

116  B. NICOLL AND B. KEOGH

Conclusion

Just as game engines in their myriad of commercial, proprietary, and
grassroots forms have come to underpin videogame production, cultural
software more broadly have come to be, as Manovich (2013) argues,
‘engines’ of cultural production in the twenty-first century. Just as cul-
tural theorists of the twentieth century rendered legible the mediating
impact of material creative tools such as musical instruments, film stocks,
and paint types on the field of cultural production, it is crucial for us
to develop ways to comprehend the cultural software that underpin con-
temporary cultural production, without reducing them to either deter-
ministic actors, romantic enablers, or passive platforms. In this book, we
have focused specifically on the Unity game engine, tracing its cultural
software circuits so as to articulate a range of tensions and movements
within the videogame field in particular. However, one could just as
easily look at the circuits of a different piece of cultural software. For
instance, one could consider Photoshop’s dominance in the graphic
design field, its impact on (and emergence from) the field of photogra-
phy, and how conflicting ideals of Photoshop are mobilized in dis-
courses around, for instance, fake news or representations of women.
Alternatively, one might use this framework to consider the mediating
impact of Microsoft’s Powerpoint slideshow software on pedagogical
practices. In essence, cultural software are more than simply programs
running on computers. They are cultural entities that configure com-
plex circuits—circuits that inscribe particular ways of working, creating,
and knowing in any given field of cultural production. Ultimately, they
enrol constituents into governed ecosystems—ecosystems that obscure
their governing through discourses of democratization, empowerment,
openness, and user-friendliness.

References

Chun, Wendy Hui Kyong. 2011. Programmed Visions: Software and Memory.
Cambridge: MIT Press.

D’Acci, Julie. 2004. “Cultural Studies, Television Studies, and the Crisis in the
Humanities.” In Television After TV: Essays on a Medium in Transition, edited
by Lynn Spigel and Jan Olsson, 418–445. Durham: Duke University Press.

du Gay, Paul, Stuart Hall, Linda Janes, Hugh Mackay, and Keith Negus. 1997.
Doing Cultural Studies: The Story of the Sony Walkman. London: Thousand
Oaks.

6  GOVERNANCE: UNITY’S DEMOCRATIZATION DISPOSITIF  117

Economic Graph Team. 2017. “LinkedIn’s 2017 U.S. Emerging Jobs Report.”
Linkedin, December 7. https://economicgraph.linkedin.com/research/
LinkedIns-2017-US-Emerging-Jobs-Report.

Foucault, Michel. 2008. The Birth of Biopolitics: Lectures at the Collège de France,
1978–79. Basingstoke: Palgrave Macmillan.

Gillespie, Tarleton. 2010. “The Politics of ‘Platforms’.” New Media & Society 12
(3): 347–364.

Gillespie, Tarleton. 2017a. “The Platform Metaphor, Revisited.” Culture Digitally,
August 24. http://culturedigitally.org/2017/08/platform-metaphor/.

Gillespie, Tarleton. 2017b. “Governance of and by Platforms.” In SAGE
Handbook of Social Media, edited by Jean Burgess, Thomas Poell, and Alice
Marwick, 254–278. Los Angeles: SAGE Publications.

Grubb, Jeff. 2018. “In Defense of Asset Flips on Steam.” VentureBeat, July 12.
https://venturebeat.com/2018/07/12/in-defense-of-asset-flips-on-steam/.

Guevara-Villalobos, Orlando. 2011. “Cultures of Independent Game
Production: Examining the Relationship Between Community and Labour.”
In Proceedings of DiGRA 2011 Conference: Think Design Play, 1–18.

Hall, Stuart. 1986. “On Postmodernism and Articulation: An Interview with
Stuart Hall.” Journal of Communication Inquiry 10 (2): 45–60.

Harvey, Alison. 2014. “Twine’ Revolution: Democratization, Depoliticization,
and the Queering of Game Design.” Game 3: 95–107.

jonp. 2017. “Changes to Trading Cards.” Blog post, May 17. https://steamcommu-
nity.com/games/593110/announcements/detail/1954971077935371954.

Kirkpatrick, Graeme. 2013. Computer Games and the Social Imaginary.
Cambridge: Polity Press.

Laclau, Ernesto. 2007 (1996). Emancipation(s). London: Verso.
Manovich, Lev. 2013. Software Takes Command. Cambridge: MIT Press.
McRobbie, Angela. 2002. “Clubs to Companies: Notes on the Decline of

Political Culture in Speeded up Creative Worlds.” Cultural Studies 16 (4):
516–531.

McRobbie, Angela. 2016. Be Creative: Making a Living in the New Culture
Industries. Cambridge: Polity Press.

Nieborg, David B., and Thomas Poell. 2018. “The Platformization of Cultural
Production: Theorizing the Contingent Cultural Commodity.” New Media &
Society 20 (11): 4275–4292.

Parker, Felan, Jennifer R. Whitson, and Bart Simon. 2018. “Megabooth:
The Cultural Intermediation of Indie Games.” Games and Culture 20 (5):
1953–1972.

Paul, Christopher A. 2018. The Toxic Meritocracy of Video Games: Why Gaming
Culture Is the Worst. Minneapolis: University of Minnesota Press.

Plantin, Jean-Christophe, Carl Lagoze, Paul N. Edwards, and Christian Sandvig.
2018. “Infrastructure Studies Meet Platform Studies in the Age of Google
and Facebook.” New Media & Society 20 (1): 293–310.

https://economicgraph.linkedin.com/research/LinkedIns-2017-US-Emerging-Jobs-Report
https://economicgraph.linkedin.com/research/LinkedIns-2017-US-Emerging-Jobs-Report
http://culturedigitally.org/2017/08/platform-metaphor/
https://venturebeat.com/2018/07/12/in-defense-of-asset-flips-on-steam/
https://steamcommunity.com/games/593110/announcements/detail/1954971077935371954
https://steamcommunity.com/games/593110/announcements/detail/1954971077935371954

118  B. NICOLL AND B. KEOGH

PUBG_Riggles. 2018. “Re: Brendan Greene Wants to Kill Me.” Online forum
comment. https://www.reddit.com/r/PUBATTLEGROUNDS/comments/
8qu07m/brendan_greene_wants_to_kill_me/e0ma17n/. Accessed 19 October
2018.

Rancière, Jacques. 2006. Hatred of Democracy. London: Verso.
Srnicek, Nick. 2016. Platform Capitalism. Malden: Polity Press.
Tkacz, Nathaniel. 2014. Wikipedia and the Politics of Openness. Chicago: The

University of Chicago Press.
Unity. 2018. “Unity at GDC Keynote—March 19, 2018.” YouTube, March 19.

https://www.youtube.com/watch?v=cmRSkHl-Gv0.
Vanderhoef, John. 2019. “Throwing Shit at the Wall: Maligned Aesthetics,

Asset Flipping, and the Politics of Value in Informal Game Development.” In
Presented at Society of Cinema and Media Studies Annual Conference, Seattle,
March 13–17.

van Dijck, José, Martijn de Waal, and Thomas Poell. 2018. The Platform Society:
Public Values in a Connective World. New York: Oxford University Press.

Vogel, Michael. 2017. “Japanese Independent Game Development.” MA dis-
sertation, Georgia Institute of Technology. https://smartech.gatech.edu/
bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=
1&isAllowed=y.

Wright, Steven. 2018. “There Are Too Many Video Games. What Now?”
Polygon, September 28. https://www.polygon.com/2018/9/28/17911372/
there-are-too-many-video-games-what-now-indiepocalypse.

Yang, Robert. 2017. “Lol We’re All Poor.” Radiator, June 26. https://www.
blog.radiator.debacle.us/2017/06/lol-were-all-poor.html.

Yang, Robert. 2018. “KILL UNITY; WE ARE ENGINES.” Itch.io, February
12. https://radiatoryang.itch.io/kill-unity.

https://www.reddit.com/r/PUBATTLEGROUNDS/comments/8qu07m/brendan_greene_wants_to_kill_me/e0ma17n/
https://www.reddit.com/r/PUBATTLEGROUNDS/comments/8qu07m/brendan_greene_wants_to_kill_me/e0ma17n/
https://www.youtube.com/watch%3fv%3dcmRSkHl-Gv0
https://smartech.gatech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/58640/VOGEL-THESIS-2017.pdf?sequence=1&isAllowed=y
https://www.polygon.com/2018/9/28/17911372/there-are-too-many-video-games-what-now-indiepocalypse
https://www.polygon.com/2018/9/28/17911372/there-are-too-many-video-games-what-now-indiepocalypse
https://www.blog.radiator.debacle.us/2017/06/lol-were-all-poor.html
https://www.blog.radiator.debacle.us/2017/06/lol-were-all-poor.html
https://radiatoryang.itch.io/kill-unity

119© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2019
B. Nicoll and B. Keogh, The Unity Game Engine and the Circuits
of Cultural Software, https://doi.org/10.1007/978-3-030-25012-6

Index

A
accessibility, 3, 31, 71, 75, 83, 85, 90,

105, 107–110, 112
aesthetics, 6, 7, 16, 53, 58, 64, 72, 77,

82, 105
affordances, 3, 4, 14, 40, 57, 64, 65,

73, 79, 84, 97, 114, 115
aggressive formalisation, 94, 95
agile management, 30, 31
amateur, 3, 70, 71, 95, 97, 112
Apple, 13, 18, 24, 25, 39, 107
App Store, 13, 18, 39, 107
The Arcade, 17, 51, 88
articulation, 5, 8, 18, 32, 66, 87, 112
artists, 3, 10, 12, 26–28, 30, 48, 49,

53–55, 58, 64, 67, 77, 92, 95,
105, 110

asset flipping, 4, 65, 77, 104, 105
asset poaching, 105, 107
assets, 4, 10, 11, 14, 18, 27, 35,

39, 40, 52, 65, 66, 76, 78, 97,
104–107, 115

audiences, 7, 24, 32, 64, 69, 71, 95,
112

aura, 77, 79

B
Benjamin, Walter, 77
b-game, 105, 106
Bitsy, 65, 77, 78, 87, 114
blockbuster, 18, 31, 96
blogs, 34, 35, 39, 40, 42, 104

C
capital, 6, 10, 29, 36, 38, 111, 115
Chun, Wendy Hui Kyong, 6, 10, 59,

60, 75, 101, 111
cinemachine, 73
circuit of culture, 5, 6, 9
circuits of cultural software, 4, 5, 7–9,

18, 83, 94, 115
collaboration, 12, 29, 42
collective intelligence, 5, 14, 35, 42,

65
commercial game engine, 11–13, 27,

30, 31, 60, 67, 72, 75, 78, 82,
83, 87, 90–94, 96, 97

community, 15, 34, 35, 40, 42, 52,
57, 86, 88, 92, 105, 108–111,
113–115

https://doi.org/10.1007/978-3-030-25012-6

120  Index

component-oriented design, 8, 43, 49,
51–53, 65, 73

console wars, 95
constituents, 7–9, 60, 79, 84, 91, 94,

97, 116
content-centric development, 24, 27,

28, 49
control panels, 39, 48
craft, 60, 66, 72, 78, 82, 83, 96, 104,

107, 112
creative expression, 4, 65, 71, 77
creative labour, 49, 58, 108
creativity, 6, 8, 10, 15, 42, 49, 58, 60,

79, 93, 106, 108, 109, 115
critics, 3, 29, 59, 66, 79, 84, 96, 102,

108
cultural convergence, 33, 34
cultural intermediaries, 59, 107
cultural production, 4, 5, 15, 24, 33,

34, 36, 40, 66, 78, 79, 94, 102,
104, 105, 108, 116

cultural software, 4–10, 12, 15–17,
47, 50, 57, 58, 60, 63–66, 72,
74, 75, 77–79, 81, 82, 84, 91,
93, 97, 102, 103, 111, 114, 116

cultural work, 5, 49, 58, 60, 64, 79,
112, 115

D
default settings, 63, 70
democratization dispositif, 8, 18, 103,

108, 109, 111–113
democratizing game development, 3,

7, 9, 15, 38, 102, 110
designers, 3, 12, 26–28, 48, 49,

53–55, 58, 66, 67, 70, 72, 74,
81, 86, 90, 110

design methodologies, 4, 6, 8, 11, 14,
16, 18, 43, 54, 64, 75

design principles, 18, 66, 72, 73, 75,
77, 79, 92

design standards, 18, 30, 65, 66, 72,
73, 75, 77, 92

discourses, 6, 7, 19, 34, 48, 59, 76,
79, 93–96, 102, 103, 111, 112,
116

Doom, 28, 68, 69
Doom engine, 28, 68–71

E
ecology, 2, 7–9, 12, 14, 15, 18, 24,

35, 38, 39, 42, 48, 97, 103, 108,
111, 114, 115

empowering, 3, 8, 18, 82, 91
empty signifier, 109, 110
enrolment, 7, 8, 58, 83, 91, 112
entrepreneurism, 58, 83, 91, 93
entrepreneurs, 8, 111
evangelists, 15
everyday gamemakers, 83
experimental, 32, 55, 75, 77, 82–84,

97

F
fake games, 4, 9, 104, 105, 107
Flash, 13, 34, 89, 90
forums, 15, 35, 41, 42, 57, 113

G
game engine, 2–5, 9–14, 16, 17, 19,

24–29, 31, 34, 42, 48, 57, 58,
64–69, 76, 77, 82, 84, 86–88,
91, 92, 95, 97, 102, 104, 108,
111, 114, 116

GameMaker, 34, 86, 87, 90
game object, 49, 50
game panes, 50, 51
gameplay, 27
Garage Band, 4, 82
The Gardens Between, 53

Index   121

Getting Over It with Bennett Foddy,
105, 106

Global Financial Crisis (GFC),
17

governance, 6–9, 16, 18, 30, 82, 83,
93, 101, 102, 109, 111, 114

grain, 4, 6, 8, 9, 14, 18, 43, 57,
64–69, 71, 75, 76, 78, 79, 92,
97, 114

grassroots engines, 87, 114, 115
grassroots videogame-making com-

munities, 12, 31, 34, 35, 42, 87,
114, 115

Grossberg, Lawrence, 6, 7, 9

H
hackers, 32, 48
handcrafted, 65, 66, 78
hierarchy pane, 50
hobbyist, 17, 25, 32–34, 55, 77, 79,

84–86, 90, 91, 107, 112
House House, 55, 56, 86

I
identities, 3–5, 8, 15, 34, 86–88, 94,

97, 103, 112
indie, 34, 59, 87, 91, 107
indiepocalypse, 4, 65, 77, 93, 103,

107
inspector pane, 50, 53, 54, 70
intense in/formalisation, 94, 95
interface, 3, 7, 10, 15, 19, 31, 32, 37,

39, 41, 48, 49, 51, 54, 55, 59,
60, 66, 72, 73, 75, 85, 86, 92,
110

J
Jenkins, Henry, 5, 33

L
labour, 6, 10, 24, 26, 27, 29, 40, 47,

58, 59, 78, 79, 105, 110, 111, 113
level editors, 11, 30, 32, 33, 90
license, 28, 31, 36, 37, 39, 41, 42, 56,

67, 71, 85, 91, 108
literacy(ies), 5, 6, 8, 16, 18, 43, 79,

82–84, 89, 93–97, 102
look and feel, 8, 16, 64, 66–72, 75,

76, 97

M
Manovich, Lev, 4, 5, 8, 10, 48, 73,

74, 116
mass-produced, 65, 66, 77, 78, 82
materiality, 16, 17, 64
McRobbie, Angela, 8, 15, 49, 58, 93,

108, 109, 111
mechanical reproduction, 77
media-independent techniques, 73, 74
media-specific techniques, 73
mentorship, 90, 93
merge conflicts, 55
meritocracy, 103
metaplatforms, 6, 10, 48
Microsoft Word, 15, 16
modding, 11, 28, 30, 32–34, 89, 90, 112
mods, 32, 33
multiple object, 12, 81

N
necessity entrepreneurs, 59
network effects, 35–38, 86, 102

O
object-oriented programming lan-

guages, 51
openness, 15, 36, 42, 76, 102, 103,

107, 110, 111, 116

122  Index

opportunity entrepreneurs, 59
Over the Edge Entertainment

(OTEE), 13

P
path of least resistance, 18, 64, 72, 76
performativity, 31
personal, 48, 77, 78, 87, 101, 110
Personal license, 37, 38, 71, 90, 91
Photoshop, 4–6, 73, 78, 81, 89, 102,

116
Pico-8, 12, 77, 84, 114
pipeline, 11, 24, 27, 28, 30, 48, 49,

53–55, 57, 60, 73, 84, 96
platform capitalism, 36, 40, 102
platformization, 4, 14, 24, 33, 34, 40,

102
play button, 51
players, 3, 16, 26, 29, 50–52, 66,

68–72, 74, 78, 79, 84, 93, 95,
96, 102, 104, 105, 108

PlayerUnknown’s Battlegrounds, 33,
105

plugins, 10, 13, 14, 35, 39–41, 52,
53, 65, 73, 74, 115

policy discourse, 5, 15, 102, 104, 110,
113

practices, 4, 15, 24, 26, 28, 30–35,
40, 42, 48, 57, 58, 78, 82, 90,
93, 103, 104, 107, 108, 110,
112, 113, 115, 116

prefabricated assets, 65, 71, 97, 104,
105

productivity, 8, 32, 48, 58, 105, 112,
114

professional, 3, 4, 17, 27, 40, 49, 56,
71, 85, 89, 93, 95, 110

programmer-centric development, 24,
27, 49

programmers, 3, 8, 10, 12, 13, 25–28,
30, 40, 48, 49, 51, 53–58, 60,
67, 90, 110

project pane, 50
proprietary game engine, 11, 12, 17,

24, 90, 94
provenance, 66, 68, 74, 78

R
Rancière, Jacques, 103, 104, 110
raycasting, 70
RPG Maker, 34

S
scene pane, 51
scenes, 6, 12, 15, 24, 25, 49–51, 55,

56, 70, 77, 86
self-actualisation, 58
self-sovereignty, 10, 48, 102, 112
shader, 13, 39, 53, 54
skills, 2–4, 30, 31, 47, 48, 58, 63, 79,

82–84, 87–91, 93, 104
Software, 28, 29, 67, 68
software culture, 6, 9, 40, 48, 49, 74,

111, 112, 115
software development kits (SDKs), 23
software engineers, 3, 13, 14, 27–29,

40, 41, 48, 49, 53, 56, 65, 87,
88, 92

software protocols, 64
Steam, 4, 71, 75, 76, 104, 105, 107,

109, 114
Sterling, Jim, 71, 76, 93, 97, 104
student, 3, 4, 12, 16–18, 30, 34, 38,

41, 42, 70, 82, 84, 85, 89–93,
97, 109, 110

support labour, 18, 40, 113, 115

Index   123

T
technobabble, 67, 95, 96
technoliteracy, 95
tertiary videogame development pro-

grams, 89
tinkerers, 48
triple-a, 31, 113
Twine, 11, 17, 34, 65, 70, 71, 77, 84,

87, 89, 94, 114

U
Unite, 42
Unity, 2–18, 24, 26, 29–31, 34–43,

48–60, 63–66, 70–79, 82–97,
102–105, 108–115

Unity Ads, 38, 39
Unity Asset Store, 14, 35, 39–41, 50,

56, 57, 65, 76, 90, 104, 110,
113, 115

Unity3D, 14
Unity game, 38, 64, 65, 71, 76–78,

82, 87, 91, 92, 116
Unity Technologies, 2, 3, 13, 34–39,

41, 42, 51, 65, 66, 91, 109, 110,
113, 115

Unreal engine, 11, 16, 68, 86, 87,
105

Unreal Marketplace, 104, 105

users, 4–7, 10, 12, 14, 16–18, 24, 25,
29, 33, 35–40, 42, 47, 50, 51,
54, 56–58, 63–66, 71–74, 79, 84,
97, 112, 113, 115

V
values, 4, 6, 18, 55, 58, 90, 102, 104,

105, 109–111, 113
version control software, 10, 55
videogame development, 1, 3, 4,

9, 11–13, 17, 25–27, 30, 34,
35, 43, 48, 49, 53, 54, 56, 58,
59, 65, 73–76, 78, 82, 83, 87,
89–97, 102, 104, 107, 108, 110,
112–115

virtual reality, 3, 9
visual scripting, 53, 85
voodoo agency, 12, 57

W
walking simulators, 70
war engines, 26
Wikipedia, 102, 111
workflows, 4, 6, 8–10, 14, 16, 18, 28,

43, 47–50, 52–60, 63–65, 76, 88,
91, 92, 114

	Acknowledgements
	Contents
	List of Figures
	Chapter 1 The Unity Game Engine and the Circuits of Cultural Software
	Abstract
	The Circuits of Cultural Software
	What Is a Game Engine?
	What Is Unity?
	Book Outline and Context
	References

	Chapter 2 Unity’s Socio-historical Context and Political Economy
	Abstract
	Videogame Development Before Game Engines
	Developer-Oriented Game Engines: From Proprietary to Commercial
	Player-Oriented Game Engines and Grassroots Videogame-Making Practices
	Unity’s Platform Ecology
	References

	Chapter 3 Workflow: Unity’s Coordination of Individualized Labour Processes
	Abstract
	Unity’s Component-Oriented Design System
	Decentring Programmers, Redirecting Workflows
	Productive Workflows
	References

	Chapter 4 Grain: Default Settings, Design Principles, and the Aura of Videogame Production
	Abstract
	The Look and Feel of a Game Engine
	Design Principles and Design Standards
	Iterative Design
	References

	Chapter 5 Literacy: Articulations of Unity Across Development, Education, and Enthusiast Contexts
	Abstract
	‘Why Do You Use Unity?’
	Unity in Tertiary Education
	Unity in the Enthusiast Discourse
	References

	Chapter 6 Governance: Unity’s Democratization Dispositif
	Abstract
	Hatred of Democratization: From ‘Asset Flips’ to ‘Indiepocalypse’
	Unity’s Democratization Dispositif
	Democratization Beyond Unity
	Conclusion
	References

	Index

