
  
    
      
    
  

10 PRINT CHR$(205.5+RND(1)); : GOTO 10




5. SERIES FOREWORD



Software is deeply woven into contemporary
life — economically, culturally, creatively,
politically — in manners both obvious and nearly
invisible. Yet while much is written about how software is used,
and the activities that it supports and shapes, thinking about
software itself has remained largely technical for much of its
history. Increasingly, however, artists, scientists, engineers,
hackers, designers, and scholars in the humanities and social
sciences are finding that for the questions they face, and the
things they need to build, an expanded understanding of software is
necessary. For such understanding they can call upon a strand of
texts in the history of computing and new media, they can take part
in the rich implicit culture of software, and they can also take
part in the development of an emerging, fundamentally
transdisciplinary, computational literacy. These provide the
foundation for software studies.
Software studies uses and develops cultural, theoretical, and
practice-oriented approaches to make critical, historical, and
experimental accounts of (and interventions via) the objects and
processes of software. The field engages and contributes to the
research of computer scientists, the work of software designers and
engineers, and the creations of software artists. It tracks how
software is substantially integrated into the processes of
contemporary culture and society, reformulating processes, ideas,
institutions, and cultural objects around their closeness to
algorithmic and formal description and action. Software studies
proposes histories of computational cultures and works with the
intellectual resources of computing to develop reflexive thinking
about its entanglements and possibilities. It does this both in the
scholarly modes of the humanities and social sciences and in the
software creation and research modes of computer science, the arts,
and design.
The Software Studies book series, published by the MIT Press, aims
to publish the best new work in a critical and experimental field
that is at once culturally and technically literate, reflecting the
reality of today’s software culture.
10. REM VARIATIONS IN BASIC



Even small changes to the 10 PRINT
code can have a significant impact on the visual output and the
pattern produced. The output of 10 PRINT
has a unique visual appeal that can be understood in terms of
design (a diagonal vs. an orthogonal composition, for instance),
and in terms of how it plays against the contextual expectations of
the historical period when it emerged (all-text BASIC programs on
the one hand and graphical software, particularly videogames, on
the other).
To understand more about this, it’s possible not
only to read the program the way one might go over a poem or other
literary text, but also to modify the program and see what happens,
as the Commodore 64 User’s Guide
and RUN magazine explicitly invite programmers to do. Writing code can be a
method of reading it more closely, as was recognized decades ago.
The text accompanying the first two printed variants suggested
modifying the distribution of characters (in Commodore 64 User’s Guide)
and adding code to cause random color changes (in the
magazine RUN).
This section shows the results of doing the first of these,
explores what happens if other PETSCII characters are chosen for
display, and finally gives a one-line variation that uses
POKE to directly write to screen memory.
As tweaking the program will show, 10 PRINT is
a kind of optimal solution that is uniquely elegant in its design
space, that of the Commodore 64 BASIC one-line maze generator. Any
similar attempt is both less concise (it requires more code) and
less expressive (it resembles a maze less or produces a less
interesting visual pattern). In fact, the concision of the code and
the expressiveness of the image are tightly related. They arise out
of a unique set of constraints and interactions, particularly the
interaction between the desire to constrain the program code to a
single line and the sequence of adjacent characters in the PETSCII
table.
EMULATING THE COMMODORE 64



The Commodore 64 was an extremely popular computer; many millions
of units were sold and many remain in working condition. It is
still possible to cheaply acquire a Commodore 64, hook it to a
television, and operate it as users of the 1980s did. When
one’s goal is to provide a classroom of students
with access to the platform, however, or when one wishes to be able
to play with and program for the Commodore 64 in many
different locations on one’s own contemporary notebook
computer, there is a more practical alternative to finding, setting
up, and starting up the classic taupe unit.
This alternative is a Commodore 64 emulator, a software version of
the computer that runs on contemporary hardware and functions in
the way the original Commodore 64 did. In 1983, a Commodore 64
could be purchased for $600. Today, for those who already have
Internet-connected computers, it costs nothing to download and use
an emulator. Emulators have been disparaged as inadequate attempts
to mimic computers; while they do not capture the material aspects
of older computers, they need not be considered as poor
substitutes. Instead, an emulator can be usefully conceptualized as
an edition of a computer.
When developers produce a program, such as the free software
emulator VICE, that operates like a Commodore 64, it can be
considered as a software edition of the Commodore 64. It
isn’t an official or authorized
edition — only being a product of Commodore would
allow for that. (There are official, authorized emulators for some
systems, but VICE and many of the most frequently used emulators
are not official.) An emulator like this is an
attempt — more or less
successful — to produce a system that functions
like a Commodore 64. The development of an emulator typically takes
a great deal of effort and can be extremely effective, as it is in
the case of VICE. Thinking of this as an edition of the system
seems to be a useful way to frame emulation, as it allows users to
compare editions and usefully understand differences and
similarities. Some emulators (like some editions) may be better for
teaching, for casual reading or play, or for research and study.
Instead of dismissing the emulator as useless because it
isn’t the original hardware, it makes more sense
to consider how it works and what it affords, to look at what sort
of edition it is.
The BASIC programs printed in this chapter can be run on a
Commodore 64 emulator. The reader is encouraged to download an
emulator, run the programs, and imagine how various differences
between emulation and the original hardware influence the
experience. For instance, the modern PC keyboard does not have the
Commodore 64 graphics characters printed on the keys, and mapping
the Commodore 64 keys to a modern keyboard layout is not
straightforward. Graphically, a composite video monitor or
television display attached to a Commodore 64 do not function
exactly like a modern LED flat panel; the pixels drawn by an
emulator are overly crisp when compared to those seen on an early display. An
emulator lets the user to save the current state of memory,
registers, and so on more easily than BASIC programs can be saved
to and loaded from disk on the hardware Commodore 64.
[image: 10 PRINT CHR$(205.25+RND(1)); : GOTO 10]

Figure 10-1. 10 PRINT CHR$(205.25+RND(1)); : GOTO 10

[image: 10 PRINT CHR$(198.5+RND(1)); : GOTO 10]

Figure 10-2. 10 PRINT CHR$(198.5+RND(1)); : GOTO 10


UNBALANCED



The Commodore 64 User’s Guide
encourages users to modify its version of 10 PRINT
in this way: “If you’d like
to experiment with this program, try changing 205.5 by adding or
subtracting a couple tenths from it. This will give either
character a greater chance of being selected”
(1982, 53).
Figure 15.1 shows the effect of changing the “.5” to “.25.” As one diagonal predominates,
the perceived architecture of the maze tends to long corridors
along that direction. More extreme variations, such as going to or
beyond 0.95 or below 0.05, present what looks like a regular
diagonal pattern with a very few lines going the other way, as if
they were occasional defects.

WEAVE



There are no other adjacent characters in the PETSCII data set
that, when substituted for the diagonal ∖ and ∕,
will result in the construction of a traditional orthogonal maze,
one that is aligned to the vertical and horizontal axes of the
screen. Using vertical and horizontal bars, for example, results in
a disconnected weave (figure 15.2), while solid and empty squares
result in a pattern similar to rough static.
Though the result certainly does not suggest a maze as strongly,
this “Weave” version of the program
is not without visual interest. The output imparts a
three-dimensional impression, as if someone had woven bands of
material over and under one another.

CORNERS



The Commodore 64 PETSCII character set includes corner characters,
such as 204 and 207, which correspond to lower-left and upper-right
corner pieces. Randomly selecting either 204 or 207, as is done in
this program, produces an image similar to a honeycomb. Diagonal
mazes are particularly efficient ones to produce on a Cartesian
grid. If a diagonal line is used, four characters can meet at the
corners, whereas only two meet along an edge when tiles touch
left-to-right or top-to-bottom. This pattern (see figure 15.3) does
not offer as many meeting points, but has some of its own
interesting visual properties.

CORNERS AND DIAGONALS



A simplification of the program above involves dropping the
INT function, so that the program chooses at random between other characters in
addition to 204 and 207, the two corners; this “Corners and Diagonals” version can
also choose the two characters in between. These characters are, of course, 205 and 206, which are the
∖ and ∕ characters that are invoked by 10 PRINT.
The result (see figure 15.4) does not have the clear structure of
the 10 PRINT maze and its pathways run for shorter stretches, appearing to be
blocked more frequently. Nevertheless, the pattern that is produced
is somewhat compelling in its confusion of elements.

FOUR WALLS



A reasonably intuitive method of constructing a maze-grid is to
fill in one edge of each square on a sheet of graph paper. That is,
when considering any specific square, fill in the top, right,
bottom, or left to form a “wall,” then move to the next square and repeat. The four characters in
this program correspond to a top-wall, bottom-wall, left-wall or
right-wall. Such characters exist in PETSCII in both “thick” and
“thin” variants; the ones used in figure 15.5 are the thick ones. Such a process is unfortunately
less elegant, as these characters are not (in either variety)
placed adjacent to one another in the PETSCII character
set — for instance, the ones used here are 181, 182, 184, and 185 — and so cannot be
addressed with a single base value plus an offset, as was done in
the previous program.
[image: 10 PRINT CHR$(204+(INT(RND(1)+.5)*3)); : GOTO 10]

Figure 10-3. 10 PRINT CHR$(204+(INT(RND(1)+.5)*3)); : GOTO 10

[image: 10 PRINT CHR$(204+(RND(1)+.5)*3); : GOTO 10]

Figure 10-4. 10 PRINT CHR$(204+(RND(1)+.5)*3); : GOTO 10

[image: 10 PRINT CHR$(181+(INT(RND(1).5)*3)(INT(RND(1)+.5))); : GOTO 10]

Figure 10-5. 10 PRINT CHR$(181+(INT(RND(1).5)*3)(INT(RND(1)+.5))); : GOTO 10

[image: 10 PRINT CHR$(181+(INT(RND(1)+.5)*3)); : GOTO 10]

Figure 10-6. 10 PRINT CHR$(181+(INT(RND(1)+.5)*3)); : GOTO 10

The image that emerges is indeed mazelike, but this image, like the
underlying code, lacks simplicity and elegance. Since top and
bottom and left and right lines can be printed up against each
other, a variation in the thickness of the walls
appears — a noticable but potentially distracting
implication of messiness and texture.

TWO WALLS



The selection of characters 181 and 184, a thick left line and
thick top line (figure 15.6), provides the best approximation of
the classic orthogonal maze that is seen in arcade, console, and
computer games. Producing it is still less elegant than selecting
between 205 and 206 as PETSCII values. The characters used are not
adjacent, so some trick, such as this one involving the use
of INT, must be used to select one of the two at random. The resulting
output is less visually interesting. It is a maze, but is both less
formally dynamic (being aligned to the screen) and less
contextually unexpected (being typical of familiar game
mazes).
POKE



A similar maze pattern can be drawn by directly placing characters
in video memory using the POKE command, which writes directly to memory —  screen
memory, in this case, which is mapped to the decimal addresses
1024–2024 (see figure 15.7). The 1024+RND(1)*1000
selects a random number in this range as the first argument
to POKE, pointing that command at some specific location on the screen.
The 77.5+RND(1) selects ∕ or ∖.
It should seem odd that after using 205.5 (and thus the values 205
and 206) to refer to these two characters, this program refers to
them using the values 77 and 78. It is, indeed, odd. This
difference is due to the PETSCII codes for characters not
corresponding to their screen codes — each
character has a different address for PRINTing
and for POKEing into screen memory. This rather esoteric feature of the Commodore
64 is discussed in the final chapter of this book, The Commodore
64.
[image: 10 POKE 1024+RND(1)*1000,77.5+RND(1) : GOTO 10]

Figure 10-7. 10 POKE 1024+RND(1)*1000,77.5+RND(1) : GOTO 10

This “POKE” program works by
randomly selecting one of the one thousand positions on the screen,
randomly selecting the screen code for ∕ or ∖, and placing that code in that memory location. Then, of course, it
uses GOTO 10 to loop back to the beginning and do everything again. While the
steady-state output is a full screen of characters changing one at
time, the program overwrites the existing contents of the screen
slowly, filling in the maze pattern at random.


RANDOM SOUNDS



Finally, consider this considerably more complex program, an audio
analogue of 10 PRINT. It plays a sequence of tones chosen from a distribution of two,
both of which have the same timbre that approximates that of a
piano. The selection is done using the same pseudorandom pattern
that 10 PRINT uses, thanks to the invocation of RND(1)
in line 30:
10 S=54272 : POKE S+24,15 : POKE S+5,190 : POKE S+6,248
20 A(0)=17: A(1)=37 : A(2)=21: A(3)=76
30 Q=INT(.5+RND(1)) : POKE S+1,A(Q*2) : POKE S,A(Q*2+1)
40 POKE S+4,17 : FOR T=1 TO 75 : NEXT
50 POKE S+4,16 : FOR T=1 TO150 : NEXT
60 GOTO 30
In Commodore 64 BASIC, one can point into a table of PETSCII
characters by simply using 205 and 206 as indices. But there is no
similar built-in way to index into a table of notes. After setting
up the sound chip in line 10, this program builds such a table
using the array A in line 20. Furthermore, the sound chip requires
two POKE commands — the ones on line
30 — to change the note frequency. Although this
is because the chip is extremely accurate in its pitch control, it
does make for longer and more involved programs.
This book does not cover arrays (which are not part of the
canonical 10 PRINT)
in any detail; it would move the discussion quite far afield to
explain exactly what is happening in each invocation of
POKE
in this program. Suffice it to say that POKE
is being used to set the sound chip’s registers,
causing the Commodore 64 to emit musical sounds in a strightforward
way — the standard way one would produce music in
BASIC. The invocations of POKE
are not simply storing values in memory for later use, nor are they
placing values in screen memory, as in the previous
example —  yet all of this is necessary to move
from a randomized generator of block graphics to a randomized
generator of tones. This program shows how much easier it is for
Commodore 64 BASIC to work on graphic, rather than musical,
elements.

15. MAZES



What is the pattern produced by 10 PRINT?
The 1982 Commodore 64 User’s Guide
says the program uses the two graphical characters
“for the maze” (53). And the
programmer who submitted the one-line version in the
magazine RUN
also described it as “drawing a continuous
maze” (13). Surely, the program would be less
interesting if framed as “Random Pattern of
Lines.” But if it is a maze, what kind of maze is it
and what cultural associations does that evoke?
An adult seeing a maze appear on the screen, after a young
programmer has typed in and run 10 PRINT,
could easily trivialize and dismiss it as simply a childish
amusement. It is easy to overlook the cultural resonance and
historical depth of the maze, which could be seen as nothing more
than a flat, empty, puzzle-book diversion. The same dismissal can
be leveled against short, recreational BASIC programs, which can
seem trivial and of no importance. This chapter rejects that view
and looks deeper into the maze — in part, to look
deeper into 10 PRINT
and the surrounding culture of creative, exploratory
computing.
The maze synthesizes the program’s output as a
visual trope that evokes a long history of meaningful mazes. Mazes
can be visual renderings, textual artifacts, horticultural
expanses, and architectural spaces. Situated as amusing puzzles,
places of terror, behavioral proving grounds, or invitations to
contemplative meanderings, in the West the
maze’s meanings date back to the legend of
Theseus and the Minotaur in the labyrinth of Knossos, a bewildering
and life-threatening space. In more recent times, mazes have served
as spaces for playful movement and as commonplace diversions in
puzzle books. Sometimes, mazes are abstract mathematical objects or
scientific tools for studying animal behavior. And in computer
games, the maze takes on an archetypal, structural frame for
adventure, chase, and combat. A full cultural history of mazes
throughout the centuries is outside of the scope of this book (for
in-depth historical accounts of mazes, see Doob 1990, Kern 2000,
and Matthews 1922). Instead, this chapter highlights the mazes
throughout history that Commodore 64 users in the 1980s would have
been likely to associate with the output they saw after
running 10 PRINT.
WHAT IS A MAZE?



A maze can mean a structure, a network of connected passages that
contains a navigable route as well as dead ends and backtracks. Or,
a maze can have a more abstract meaning: a complex network of paths
with or without a solution. In popular use, the meaning of the term
“maze” has been stretched to cover
intellectual puzzles, tangled legal code, and confusing,
labyrinthine situations. 10 PRINT’s
output can thus evoke a rich collection of associations by means of
a simple yet resonant figure.
10 PRINT meets some of the criteria that William Henry Matthews establishes for mazes
in his Mazes and Labyrinths (1922): they are “works of
artifice,” not “‘labyrinths’ of nature, such as forests, caverns, and so forth”;
they are endowed with “an element of purposefulness in the design” (182). They also betray
“a certain degree of complexity” (183). Finally, he requires
“communication” among the maze’s component parts and between its
“interior and exterior” (183).
This short program is, indeed, a complex work of artifice. However,
ironically, the compelling and captivating quality of
10 PRINT arises from the lack of an obvious, purposeful designer. Someone
wrote the line of code, certainly, but the specific person who was
the author was not named. The purposefulness of the design arises
from a set of accidents, including the BASIC RND
function and the appearance of the two diagonal line characters,
elements that were themselves created anonymously. Furthermore,
in 10 PRINT, communication among the component parts is established by accident,
from gaps that appear between slashes. Overall, the construction
of 10 PRINT’s maze is considerably more muddled than Matthews’
criteria would seem to demand.
As material, architectural structures, mazes have a finite size.
But there is no limit to how long 10 PRINTcan
be left running. As an endless production, 10 PRINT suggests
the form of a maze, but it does not always offer a path or
solution. As such, the program exists in between the two
definitions of maze: a physical structure on the one hand and an
intricate confusion on the other.
Mazes typically offer at least one path; the key structural
difference is whether they offer more than
one — whether they are unicursal or multicursal. A
unicursal maze offers a single path along which walkers proceed,
never making a choice about where to turn. A multicursal maze,
by contrast, invites wrong turns, has dead
ends, and may even have multiple paths to the exit or
center.


MAZE VS. LABYRINTH
The terms “maze” and
“labyrinth” are generally synonyms
in colloquial English. Still, many scholars and historians have
argued over the distinction between these two terms. In the most
popular proposed distinction,
“labyrinth” refers only to
single-path (unicursal) structures, while
“maze” refers only to branching-path
(multicursal) structures.
In this book, the terms “maze” and
“labyrinth” are not used to
distinguish two different categories of structure or image.
Instead, the two terms indicate a single conceptual category, with
this book primarily using the term
“maze” for both.



In unicursal mazes, the navigable space is bounded and a single
path is set; users have no directional decisions to make, save to
follow the meanderings of the path, leaving their attention, mind,
or emotions free to wander or focus elsewhere, while continuing to
the end at the center of the maze or to a unique exit. The
unicursal maze sometimes allegorizes temporality, offering a
spiritual and contemplative space to the walker. Unicursal mazes
can be traversed repeatedly and ritualistically for peace and
spiritual comfort. In unicursal hedge mazes the hedges often limit
one’s vision to an immediate and foreshortened
horizon, suggesting enclosure and protection.
Multicursal mazes, by contrast, ask to be solved. Instead of
following the unicursal maze’s predetermined
path, visitors to a multicursal maze run the risk of getting lost
as they attempt to find the exit.
The 10 PRINT  program itself
(not its output) can be seen as a unicursal maze. When inputting
this program, beginning programmers follow a series of characters,
copying them from manual or magazine to computer terminal. The
program starts as a puzzle for those who have some understanding
but not complete knowledge of BASIC and the Commodore 64. Once the
code has been typed and executed and the programmer witnesses the
maze, there is no returning to a naive view of this line of
code —  it is impossible to read the line without
imagining its output. With some study, it becomes clear how the
program produces this output: the single path through this short but initially tangled program is
revealed.
Yet the program’s output also suggests a multicursal maze, because the patterm can apparently be traversed,
or at least attempted, in several ways. Even though the maze
generates itself anew line by line, it does so slowly, and at any
given point a single screen can be interpreted and one can consider
whether a solution is possible. To do so does require that the
viewer make some assumptions about where the maze starts and ends
as well as about other matters. (An exploration of this process
appears in the remark Maze Walker in BASIC). In any case, the
invitation to see this as a multicursal maze is clear to
many.

MYTH, RITUAL, AND ALLEGORY



The novice programmers of the Commodore 64, particularly those who
were young, would have no doubt been enticed by the depiction of
mazes as sites for adventure. Mazelike environments, printed in
modules and drawn by hand, were a part of Dungeons & Dragons,
the popular role-playing game that began in the mid-1970s. Dungeon
masters in that game plotted spaces, commonly on graph paper, full
of monsters and fiends that were inspired by several fantastic and
legendary sources, including the myths of ancient Rome and
Greece.
The most famous ancient maze of myth is the labyrinth of Knossos,
Crete, in which Theseus encounters the Minotaur, a horrifying
hybrid, the cursed offspring of Minos’s wife and
a bull (Minos + tauros).
Like a basement or attic in Gothic literature (see Gilbert and
Gubar 2000), the Knossos labyrinth is the hiding place for a
defective, dangerous family member. Theseus arrives at Knossos and
wins the affection of the king’s daughter
Ariadne, who offeres him a means of returning from the labyrinth
after he enters it to defeat the Minotaur. She suggests he tie a
string to the entrance and unravel it as he proceeds through the
maze so that he can follow it back to the entrance. Thanks to
Ariadne’s thread, Theseus successfully makes his
way through the maze, slays the Minotaur, and escapes. The allegory
here invokes the danger of illicit desire; it also shows that those
who hold tight to a predetermined path can succeed.
The Knossos maze is best understood in terms of
Theseus’s narrative path through it, not as the
space of the labyrinth itself. This transformation from multicursal, unknowable confusion to a marked and bounded
pathway reflects the mastery of any system, from challenging,
mysterious, threatening, and deadly to easy, known, mapped, and
tamed. This original labyrinthine myth underscores the reality of
many puzzles: when the solution is known, the puzzle seems simpler
if not trivial. Rather than the fantasy of a warrior moving freely
through an open map, the tale of Theseus teaches that success comes
from adhering to a string, a particularly useful analogy in the
unforgiving corridors of programming syntax.
[image: The central labyrinth and maze patterns of Amiens Cathedral were built in the thirteenth century. Courtesy of Stephen Murray. ©1991, Stephen Murray.]

Figure 15-1. The central labyrinth and maze patterns of Amiens Cathedral were built in the thirteenth century. Courtesy of Stephen Murray. ©1991, Stephen Murray.

The morphing of the maze from complex to simple (or at least
understandable) is part of the Commodore 64
user’s ideal encounter with 10 PRINT,
but the user is more like the creator of a maze than its explorer.
Daedalus, the architect of the labyrinth at Knossos, holds a place
of honor as puzzle maker supreme. Daedalus understands that
planning, intentionality, and construction are integral
characteristics of the mystique of the maze. 10 PRINTthus
channels Daedalus more than Theseus: the program is a
blueprint  for a maze, not just a structure or image that appears without any
history or trace of its making. And at the same time,
10 PRINT itself takes the role of maze creator: the programmer may be the
maze’s architect, but the program is its builder.
The associations evoked by 10 PRINT may
begin with the Minotaur’s maze, but they
continue through history, adding to the complex symbology and
sacred rites of Christian churches and then rising in the turf and
hedges of the countryside. Mazes take on religious import on the
floors of cathedrals and basilicas. Among the largest and most
famous church labyrinths is at Chartres, France, built circa 1200
CE. It is a walkable, eleven-circuit labyrinth ornamented around
its outer ring with lunations (Kern 2000, 153), and has been an
object of endless speculation, from rumors of treasure buried under
its center to theories about its functioning as a lunar
calculator.
Church mazes are usually meant to be walked or crawled on the path
to penance. The names of these include Labyrinth of Sin, The Path
to Redemption, and The Path to Jerusalem. These pathways symbolized
paths to Christian salvation, relating a Paschal instead of a
Minoan mystery. Interestingly, the path of the meanderings in the
labyrinths at the cathedrals at Chartres and at Amiens are exactly
the same, even though the former is circular and the latter
octagonal, as seen in figure 20.1 (Wright 2001, 60).
10 PRINT retains a dimension of spiritual mystery. The program
certainly doesn’t seem to be part of any
religious practice, but as code, 10 PRINT
taps into the mazelike mystery that visual symbols and glyphs
evoke: to type in a program from a manual is to follow the twisted
line from code to output and back again. The programmer follows the
single path of the code from ignorance to knowledge, a
pilgrim’s path. 10 PRINT
may not help programmers attain salvation, but it does offer an
accessible means by which novice programmers can trace the steps of
writing code to be initiated into the mysteries of a magic box, the
personal computer.


DANCING A COMPLEX STRUCTURE
Mazes are usually imagined as architectural, material, and fixed,
but cultures have long noticed that they can correspond directly to
a human activity, dance. In The Iliad,
Homer credits Daedalus both with a dance floor and a labyrinth.
Kern speculates that the labyrinth was a choros, which has the
double meaning of dance and dance surface. Given that no
labyrinthine buildings survive in Crete, the depictions of
labyrinths on coins may indicate the path of a
dance — particularly since maze dances have
survived. Theseus meets the Minotaur in a Minoan maze, but he and
his men immortalize that adventure in dance on the way back. As
Matthews explains, “On the island of Delos they
performed a peculiar dance called the Geranos, or
‘Crane Dane,’ in which they
went through the motions of threading the Labyrinth, and . . . this
dance was perpetuated by the natives of that island until fairly
recently” (1922, 19). These dances have continued to be
performed elsewhere, and numerous other labyrinthine dances are
known, some with military purposes and some tied to rites of
spring. Martha Graham adapted the motifs of the Cretan maze story
in “Errand into a Maze” (1949),
where it is Ariadne who is trapped by the Minotaur. After
contemplating her escape from the
labyrinth — represented by a rope on the
floor — “she breaks her pattern
and breaks her tormentor. The maze of rope reflects the maze of her
mind and the maze of the myth” (Zlokower
2005).
The dancer’s relationship to the maze is
analogous to that of the amateur learning BASIC. As the novice
programmer prepares to face the Minotaur machine, a single line of
code serves as a clue leading to safety. As with the maze dance, it
is in tracing this labyrinth by typing and running
10 PRINT
that the very corridors are created.
The maze dance has not been completely forgotten in digital media.
It may seem odd to think of Dance Dance Revolution
as a maze game, but its arrows do show a labyrinthine path that the
dancer, standing in place, is supposed to navigate. Missing a step
is allowed, but the perfect performance will be as ritualized a
motion through space as a Pac-Man
pattern. Looking beyond the arcade, Diana Slattery has created a
work called The Maze Game that brings together the maze as a site of meaningful dance. In her
digital work and companion novel, moving through a lethal maze
takes grace and literacy, since the maze is constructed out of
glyphs from Slattery’s created visual language
“glide.” Slattery’s work stands at the intersection of
dance, maze, and narrative, showing a new connection.



As with a rosary and the Stations of the Cross, the Christian
labyrinth is unicursal. None included dead ends or choice points
until the fifteenth century, when multicursal aberrations appeared,
as Helmut Birkhan explains, as a “symptom of the
secularization of the labyrinth idea” (quoted in Kern
2000, 146). With this secular turn, the maze becomes a space of
leisure as well as ritual, and is lined with hedges, marked by
rocks, and surrounded by grooves. Church-like mazes and mazes that
invite a ritual attitude surfaced throughout Europe, although
several of these were more related to pagan rites of spring than to
Christianity. In A Midsummer Night’s Dream,
the faerie queen Titania ponders the ghostly outlines of abandoned
turf mazes:
The nine men’s morris is fill’d up with mud,

And the quaint mazes in the wanton green

For lack of tread are undistinguishable. (2.1.98–100)



As more and more pagan and secular mazes emerged alongside church
and other labyrinth traditions, they retained some of their
profound, sacred nature while also offering puzzle play and
leisure.
Hedge mazes and 10 PRINT
possess affinities that their material differences obscure. Hedge
mazes need to be planned and plotted, but unlike most other mazes,
they must grow in order to fulfill that plan. 10 PRINT’s
maze does as well, albeit in a different way than bushes do: once
seeded, the computer-generated maze grows without tending, growing
until the viewer interrupts it.
Hedge mazes offer decoration in a garden, but as leisure devices
instead of religious rituals, they also offer exhilaration and
vertigo when they are “run.” Writing
of a famous half-mile hedge maze at Hampton Court Palace near
London, Matthews describes it as an “undiluted
delight” to “scores of hundred of
children, not to mention a fair sprinkling of their
elders” (1922, 129). This way of encountering the maze
was carried into video games such as Doom
(1993) and Pac-Man (1980). 10 PRINT’s
continuously cascading display echoes the playful zigzagging of
children gamboling through the hedges.

THE LABORATORY MAZE



The maze traveler has had many manifestations: the brave warrior
facing obstacles, the penitent disciple undertaking a divine
ritual, the Elizabethan child experiencing vertiginous pleasure.
But no discussion of the cultural touchstones of mazes (and their
resonances for maze creators) would be complete without that
humbler maze walker, or crawler, the laboratory rat. In the context
of psychological testing, the rat’s encounter
with the maze does not prove bravery, piety, or ingenuity so much
as it reduces
human agency and learning to behavioral conditioning.
The first maze constructed for rats by researchers was built in the
late 1890s — but it was not originally used for
testing the creatures. Willard Small of Clark University built a
maze environment to allow rats to eat and exercise when they
weren’t taking part in experiments. Small wanted the environment to
simulate the burrows that rats inhabit in nature, but he modeled
the first laboratory rat maze after the Hampton Court Palace maze
(Lemov 2005, 25). The restorative maze is quite consonant with the
purposes for which the Hampton Court Palace maze was built,
although Small was attending to the constitution of rodents rather
than royals.
John B. Watson used maze environments for more familiar research
purposes: to determine whether rats could make their way through a
maze under different experimental conditions. After his rats had
learned their way through a maze, Watson blinded or otherwise
maimed the creatures to deprive them of different senses. His work
attracted public attention, and he was denounced in a
New York Times
editorial as a torturer. Watson, however, was sure of his
behavioral science agenda, and he concluded that the same
principles of operant conditioning that apply to rats apply to
people as well. By 1916 he had moved on to experiments with
infants. In one famous experiment he conditioned a baby,
“Little Albert,” to fear a furry
white rat and furry white things in general (Buckley
1989).
The use of mazes in experiments with rats increased greatly during
the 1920s. Behaviorism, the perspective that all animal and human
actions are behaviors, is now mainly associated with another American
scientist, B.F. Skinner. His operant conditioning chamber, also known as the
Skinner box, is another famous environment for laboratory animals
that was built decades after Watson’s mazes saw
their first use. While Skinner’s name is better
known today, Watson’s maze remains
emblematic — and similar environments are still
used for experiments today.
In 1959, one of the earliest computer programs written for
fun — an example of “recreational computing” — depicted an
experimenter’s maze. The program, perhaps the
first computer program to draw a maze of any sort, was written for
the TX-0 at MIT by Douglas T. Ross and John E. Ward. The TX-0 was
an experimental computer that provided one of the first
opportunities for people to program when not working on an official
project. It also allowed programmers to work on the machine
interactively, much as Commodore 64 programmers later would, rather
than submitting batch jobs in the form of decks of punched cards.
In the program that became known as “Mouse in
the Maze,” a mouse moves through a maze, eating cheese.
The mouse could also consume martinis, which cause it to become
disoriented and degrade its performance. In this case, the
environment implemented was not the hedge maze of diversion and
fun, but a more staid experimenter’s maze. This
essentially serious maze was then made playful with the addition of
an amusing alcoholic reward and the simulation of appropriate
behavior.
10 PRINT picks up on aspects of “Mouse in the Maze.”
Its output is a regular arrangement of “walls” in a
grid — akin to the display of that earlier program
and similar to the arrangement of the stereotypical laboratory
maze. “Mouse in the Maze” does not present the compelling creation of an inspired Daedalus, but a
behaviorist experiment. This maze is a challenge to
intelligence — not, however, a romantic, riddling
intelligence, but a classically conditioned, animal kind. It also
brings in the idea of the scientist, who may be indifferent to the
struggles of the creatures lost in the maze.
But who is the user at the interface of 10 PRINT,
the scientist or the rodent? When 10 PRINT
runs, it may generate its maze relentlessly, but it does not trap
the user like a rat. Instead, given the top-down view and the lack
of a user-controlled maze walker, the computer presents the
programmer with the point of view of the maze designer, offering in
a sense to collaborate with the user in creating a new design. Amid
the playful and religious connotations of the maze are those things
the experimenter’s maze hints at: that the computer is a scientific instrument, and the
walker of the maze might be not a Greek hero but a small creature
driven by hunger.
[image: Information theory pioneer Claude Shannon pictured ca. 1950 with his mechanical mouse Theseus and its magnetic metal maze. Courtesy and copyright MIT Museum.]

Figure 15-2. Information theory pioneer Claude Shannon pictured ca. 1950 with his mechanical mouse Theseus and its magnetic metal maze. Courtesy and copyright MIT Museum.


THE COMPUTERIZED MAZE



In the early 1950s the mathematician and engineer Claude Shannon
designed a mechanical mouse (see figure 20.2) that appears to solve
the same kind of maze a real mouse might be expected to navigate in
one of Watson’s behavioral experiments. Shannon,
a foundational figure in modern computing, named the mouse Theseus,
collapsing the mythological hero and his noble plight into a mere
contraption guided by a mechanized system. Although featured in
both Time  and Life (“Mouse with a Memory” 1952;
“Better Mouse” 1952), Theseus itself was not a sophisticated piece of artificial intelligence. It was
simply a wooden mouse on wheels with a bar magnet inside and
copper-wire whiskers. The true magic of this mouse resides
underneath the maze, in a system of electronic relays that switch
positions when the mouse’s whiskers touch
corresponding walls in the maze above. The first time through a
maze, Theseus blunders randomly, propelled by its magnet, flipping
the relays underneath whenever it encountered a passage. The next
time, Theseus navigates the maze perfectly, thanks to the relays
underneath, which record the correct route.
This means of negotiating the twisting passages of
Shannon’s maze was not mere novelty. As
Time  explained in 1952, Theseus is “useful in
studying telephone switching systems, which are very like
labyrinths.” Indeed, George Dyson argues that Theseus
inspired the RAND Corporation engineer Paul
Baran’s “adaptive message
block switching” — the precursor to
what is now known as packet switching, the protocol that defines
the way data flows on the Internet (Dyson 1997, 150).
Aside from its significance to network computing, Theseus serves as
a vivid example of an early connection between mazes and computers.
Furthermore, Theseus shares a procedural resonance with
10 PRINT.
Theseus “learns” through repetition,
or looping, the fundamental process that is used to draw the
10 PRINT
maze. And like a computer program, the mouse in
Shannon’s maze is only the surface-level
signifier of much deeper processes. Theseus in fact is not only
dumb but, by itself, inert. The
“brain” of Theseus lies in the
relays hidden underneath the surface of the maze, much in the same way the on-screen design of 10 PRINT
is generated by a piece of code, initially not very clear, which
depends upon an invisible, low-level call to a pseudorandom number
generator.
Computers did not completely change the cultural idea of the maze,
but they did provide new ways to represent, generate, solve, and
play in mazes. And, as computers came into the home and became
widely accessible, they helped to bring mazes into daily life once
again. In part, this happened thanks to the work of early computer
scientists who wrote programs to generate mazes. But many popular
mazes were not as computationally sophisticated. They were,
however,
integrated cleverly into enjoyable computer games that reached a
mass audience.
It is useful to group these computer mazes by the point of view
they offer to their interactors. There are first-person mazes,
partially represented on a screen, which show the wall or
passageway directly in front of the maze walker. There are also
second-person mazes, textually represented, in which the maze
walker is the “you” to whom the
traversal of the maze is narrated. And, there are third-person
mazes, sometimes fully represented mazes, in which the maze walker
maintains a large-scale or omniscient view.
A significant early maze program is Maze,
which presents
a 3D view of a maze in which a player can see (and shoot)
opponents. This program was created in 1973 at the NASA Ames
Research Center by Steve Col-ley and Howard Palmer and later made
into a multiplayer game by Greg Thompson. In 1974 the program was
then expanded at MIT; Dave Lebling wrote a server that provided
text messaging and supported up to eight players or robots. The
same program was later ported to the Xerox Alto as
Maze War.
The Maze environment was created for entertainment, but it was really little more than a
convoluted battlefield — not a space to be explored or solved and certainly nothing like the entirely
nonviolent English hedge maze. Other terrifying maze environments
became a staple of early home computer mazes, and some contained a
Minotaur-like threat. 3D Monster Maze
was an early example, developed in 1981 and released the following
year on the Sinclair ZX81. The game uses character graphics and
features a randomly generated 16 × 16 maze with a
Tyrannosaurus Rex.
Although 3D mazes with some more exploratory aspects were offered
in the Ultima, Wizardry,
and Bard’s Tale  series, the maze is more a frightening site for combat than a
playful place of discovery in many first-person games. This can be seen as early as 1984 in the Commodore 64
game Skull, which allows the player to search for treasure and sends
threatening skulls into the maze as opponents. Wolfenstein 3D
(1992) and Doom (1993) make this perspective on a mazelike environment even more
fearsome. Sound design, darkness, and the use of conventions from
horror films that give the effect of seeing without peripheral
vision all contribute to this effect. The first-person maze, in
addition to connecting players to the perspective and to some
extent the subjective experience of their maze-bound characters, is
likely to inspire close and constant attention.
Many of the earliest computer-presented mazes are not visual; they
are described textually, narrated to the player from a
second-person perspective. Second-person mazes of a sort are found
in early text-based games such as Hunt the Wumpus,
a 1973 BASIC program by Gregory Yob. Hunt the Wumpus
departs from the standard grid-based BASIC game by providing a
playing field of a different topology, a dodecahedron. The player
stalks and is stalked by a formidable opponent, much as the
dinosaur later pursues the player of 3D Monster Maze.
Textually described mazes developed into their most complex and
confusing configurations in text-based adventure games of the sort
now called interactive fiction. The genre began with the
groundbreaking Adventure,
written by Will Crowther for the PDP-10 in 1976 and later expanded
by Don Woods into a full-fledged underground adventure. Basing the
game in part on his own caving experience in the Mammoth Cave
system, Crowther includes a ten-room maze introduced with
“YOU ARE IN A MAZE OF TWISTY LITTLE PASSAGES,
ALL ALIKE.” “YOU” works to connect the player to the character in the maze, although in a
different way than first-person 3D games do. For one thing, that
pronoun sometimes is explicitly used to address the operator of the
program rather than to indicate the main character, as when
Adventure outputs “IF YOU PREFER, SIMPLY TYPE W RATHER
THAN WEST.”
From Hunt the Wumpus through Adventure,
another notable difference is that second-person mazes are
typically turn-based rather offering real-time play. They also are
embedded in a broader context of simulated spaces. Sometimes these
are confusing ones that, even if they are not called mazes, require
that players map them on paper. In any case, they usually invite
different forms of systematic, high-level thinking that allows the
environment to be figured or puzzled out. The
player’s activity is thoughtful and paced at the player’s discretion
rather than being based on twitch reflexes.
When players draw maps of the mazes in Adventure, Zork,
or other interactive fictions, they transform textually represented
second-person mazes into visually represented third-person mazes.
Such maps convey a sense of mastery of the maze even though a
third-person perspective on a maze does not guarantee its safety or
solubility.
Shannon’s Mouse in the Maze offered an early glimpse of the third-person computer maze, but
this form truly erupted in the Unites States less than two years
before the release of the Commodore 64, in October 1980. This is
when the original Pac-Man arcade game arrived from Japan. In Japan, the genre of games
inspired by Pac-Man is called “dot-eat” games (ドットイート), but in the United States such games are called maze or maze
chase games.
Pac-Man cannot thread his way through the environment to find an
exit — except for the tunnel that links the left
and right side of the screen together. The playing field may be
better described as being littered with obstacles rather than as
being “a maze” in the sense that
church labyrinths and hedge mazes are usually understood.
Nevertheless, the playing field was
called a maze from the beginning. The New York Times
called Pac-Man “a circle with a big mouth that
eats up dots in a maze while other big mouths try to eat it
up” (Latham 1981), while Newsweek
mentioned the “maddening Pac-Man
maze” (Langway 1981). The puzzle the game poses to the
voracious Pac-Man is not to get out of the maze, but to run through
all of it while avoiding the pursing monsters.
Pac-Man’s maze is aligned to the axes of the display: the paths are either
horizontal or vertical. But just as the tanks in
Tank (1974) and the player’s ship in
Asteroids (1979) can turn and fire in many different directions, it is
possible to represent a maze that is not
“orthogonal” in this way: 10 PRINT provides
a very simple alternative, a diagonal maze. Third-person videogame
mazes, in contrast, are almost always aligned as in
Pac-Man,  even those that predate the dot eater.
Magnavox’s infamous K. C. Munchkin
(1981) is something of a Pac-Man knock-off that was itself knocked off shelves by a famous court
ruling, Atari v. Philips. To players today, the game looks like just another maze game. With
doors that open and close, only twelve dots on the screen, and
other notable differences, it now seems impossible to confuse
with Pac Man.  The two games are similar in that they both feature mazes that are
orthogonally aligned. But among K. C. Munchkin’s
differences are that it allows players to take on the role of
Daedalus, designing their own levels.
Other videogame mazes, and games with mazy environments, quickly
made their way into the home, too. The game bundled with the
classic cartridge-based Atari VCS in 1977 was Combat,
which brought the convoluted battlefields of Tank
into the home. Soon after, that console featured
Maze Craze (1978), which allows players to compete in several different
challenges in maze environments that were automatically
generated.
All of these games treat the screen display as a single complete
visual unit, like the board of a board game. The continuously
scrolling maze of 10 PRINT  at least suggests a maze that is larger than the screen, even if
one cannot navigate around to see what is offscreen. Another
interesting contrast to the single-screen maze is a close-up design
that puts the player in a larger-scale maze, seen in the 1979 Atari
VCS game Adventure  (see figure 20.3). This console game is loosely based on the
interactive fiction work of the same name, and features a hero who
can collect treasure despite the efforts of three dragons.
Unlike Pac-Man, in which the player can guide Pac-Man out a warp gate on one side
of the screen and see him enter on the other side,
Adventure contains numerous topologically impossible warps that are always
hidden from view and can only be deduced. Instead of an overview
map of the total maze, each screen is a closeup of simple paths,
often emphasizing discontinuous fragments of other paths that
can’t easily be reached.
Diagonal orientation of the sort produced by 10 PRINT
did have a place in the design of early mazelike games. It emerged
through isometric video games that introduced diagonal motion at
the same time they challenged the picture plane through the
pseudo-3D effect of isometric perspective. Two isometric games came
to arcades in 1982: Q*bert, a completion/avoidance platformer on an isometric pyramid,
and Zaxxon, an obstacle-racer emphasizing pseudo-3D elements. Neither is
particularly mazelike compared to later isometric games from years
after the first version of 10 PRINT. Ant Attack
(1983) and Marble Madness (1984) are examples of games with more convoluted obstacle courses
on fields that were larger than the screen.
Adventure (1979) for the Atari VCS featured a maze to navigate while fighting. dragons and searching for keys to enter castles.
[image: ]

ENTERING THE MAZE



While 10 PRINT seems to be a noninteractive 2D third-person maze, its single line
of code produces an unusual twist on this form of maze, shifting it
to a different axis than is traditionally used. This is
accomplished by the simple selection of two diagonal character
graphics. That design element introduces another complexity: even
though the maze is built from left to right and down the screen,
the walls and paths do not follow this axis of
construction.
In the mid-1980s, it would be impossible for most users to consider
a maze-generating computer program without thinking of the many
computer games that take place in mazes. But, for many, the maze
would also be associated with different types of terror,
contemplation, experimentation, and play. Would the user be Theseus
or Daedalus? The scientist or the rat? Pac-Man or Zaxxon? And would
programming be meditating, dancing, escaping, solving, or
architecting a maze? This richness seems to be part of what
encouraged new Commodore 64 programmers to
“enter the maze” by entering this
program on their computer, to work at solving and understanding
this code only to revise, extend, and reimagine it in their own
programs.
Considering 10 PRINT in light of the cultural history of mazes situates the
program’s output in a space of symbolic meanings
and design principles — the many ways in which
something can be seen as mazelike or designed to be mazelike. This
view sheds light on the specific ways in which 10 PRINT
both echoes and alters earlier notions of a maze. The output is not
unicursal, after the fashion of early labyrinths, nor is it marked
for traversal with clear entrances and exits, as in a meditative or
hedge maze, nor is its system of paths continuous and fully
explorable, as in a laboratory run for rats. Instead,
10 PRINT produces something of the visual complexity of later mazes, but
this complexity does not address a particular purpose, and instead
emerges out of an absolute simplicity of design. If
10 PRINT is a maze in a new and different way, this difference is based in deep similarity to
the precursors it resembles, in particular, the way that all mazes
arise out of shared principles of regularity on the one hand and
randomness on the other.

20. REM PORTS TO OTHER PLATFORMS



Adapting a program from one hardware system to another is
“porting,” a term derived from the
Classical Latin portāre — to carry
or bear, not unlike the carrying across (trans
lātus) of translation. A port is borne from one
platform to another, and the bearer is the programmer, who must
gather up the details of the original and find places for them amid
the particulars of the destination, attempting to identify and
preserve the program’s essential properties. The
translator faces these same sorts of problems when encountering a
text, and such problems are particularly acute when the text is a
poem. Where does the poetry of the poem lie? In its rhythm? Its
rhyme? Its diction? Its constraints? Its meanings? Which of these
must be carried over from one language to another in order to
produce the most faithful translation?
In Nineteen Ways of Looking at Wang Wei,
a study of the act and art of translation, Eliot Weinberger (1987)
reads nineteen versions of a four-line, 1,200-year-old poem by the
Chinese master Wang Wei, attentive to the way translators have
reinterpreted the poem over the centuries, even as they attempted
to be faithful to the original. With a single word, a translator
may create a perspective unseen in Wei’s
original, radically shift the mood of the poem, or transform it
into complete tripe. Many times these changes come about as the
translator tries to improve the original in some way. Yet
translation, Weinberger writes, “is dependent on
the dissolution of the translator’s ego: an
absolute humility toward the text” (17).
The programmer who ports faces similar challenges. What must be
preserved when a program is carried across to a new platform: The
program’s interface? Its usability? Its
gameplay? Its aesthetic design? The underlying algorithm? The
effects of the constraints of the original? And should the
programmer try to improve the original? The ethos of adaptation
will vary from project to project and programmer to programmer;
what a programmer chooses to prioritize will help to determine the
qualities of the final port and its relationship to the original
program.
In this remark, a number of ports — translations — are
presented. These are ports from Commodore 64 BASIC to other
platforms and languages, developed specifically for this book.
Other ports can be found elsewhere in this book. By striving to
design accurate adaptations, and to capture qualities of the
original code as well as the output, nuances of the original that
might otherwise be overlooked can be revealed. Just as the
variations of 10 PRINT in the previous remark illustrate the consequences of
choosing one particular set of parameters among the many that were possible
on the Commodore 64, ports of 10 PRINT
can highlight the constraints and affordances of individual
platforms. The ports provide a tightly focused comparison of the
Commodore 64 to other systems, emphasizing the unique suitability
of the Commodore 64 for this particular program.
APPLESOFT BASIC AND TANDY COLOR BASIC



Applesoft BASIC is one of two standard BASIC implementations for
the Apple II; Applesoft is the one that supports floating point
math and seems very similar to Commodore 64 BASIC. The Apple II
family of computers was of the same era and uses the same processor
as did the Commodore 64, the MOS 6502. Applesoft BASIC, like
Commodore 64 BASIC, was written by Microsoft and based on its 6502
BASIC, a version (as discussed in the chapter on BASIC) that
derives from Microsoft’s Altair BASIC. The Apple
II computers and the Commodore 64 were really quite alike, almost
as if they were siblings separated by corporate
circumstance.
This makes the Apple II a good starting point for a series
of 10 PRINT ports. The same BASIC statements and keywords can be used in a
version for this computer, and the same sort of scrolling will push
the maze continually up the screen.
On the Apple II, however, the slash and backslash characters must
serve as the maze walls, since the PETSCII diagonal-line characters
are not available. The codes for those Apple II characters are not
adjacent; they have the ASCII values 47 and 92. This means that a
more elaborate expression for the selection of a character must be
used. The first step is selecting the value 0 or 1. This first
selection is accomplished in INT(RND(1)*2), which in the inner expression produces a floating point number that
is at least 0 and less than 2, such as 0.492332 or 1.987772; then,
using INT, this value is truncated to either 0 or 1. The next step
is to multiply that value by 45 and add 47 so that either 47 or 92
results. This is a reasonably simple way to make this selection,
but, as with certain Commodore 64 BASIC variants, the code that is
needed is more elaborate and less pleasing than in the
canonical 10 PRINT:
10 PRINT CHR$(47+(INT(RND(1)*2)*45)); : GOTO 10
[image: Screen capture from the Apple II port of 10 PRINT.]

Figure 20-1. Screen capture from the Apple II port of 10 PRINT.

[image: Screen capture from the TRS-80 Color Computer port of 10 PRINT.]

Figure 20-2. Screen capture from the TRS-80 Color Computer port of 10 PRINT.

The output of the program is less satisfying, too (Figure 20-1).
Although the “/” and “\” characters on Apple II computers are exactly diagonal,
they do not span the entire square that bounds a character. This means that the
“walls” do not meet either horizontally or vertically. Each Apple II character is five pixels
wide and seven pixels tall, so the perfect diagonals of the slash
and backslash have a pixel of empty space at the top and another at
the bottom. In any case, Apple II characters cannot be drawn
directly against one another, as all characters on the system are
printed with a one-pixelwide space on either side of them and a
one-pixel space below.
This space between characters is even more evident in the port
of 10 PRINT to another competitor of the Commodore 64 in the
1980s —  the TRS-80 Color Computer (or “CoCo”), sold through Radio Shack.
If the Apple II was the Commodore 64’s sibling, raised by another corporation, t
hen the Color Computer, with the
Motorola 6809 and a different version of Microsoft BASIC, was the
eccentric cousin. Just as with Applesoft BASIC, the Color BASIC
port of 10 PRINTrequires the use of ASCII characters 47 and 92; one significant change,
however, must be made to the program:
10 PRINT CHR$(47+INT(RND(0)*2)*45);:GOTO 10
Note the change from RND(1) to
RND(0). This revision is due to the Color Computer’s
implementation of RND, which diverges quite a bit from that in other BASICs. In a move to
make the RND command more intuitive, the TRS-80 chooses a random number between
1 and the argument, X. So RND(6) chooses a random number between 1 and 6. RND(1) in
Color BASIC will only ever choose the number 1, making for a
decidedly nonrandom pattern. RND(0), however, selects a floating point number between 0 and 1, which,
multiplied by 2, can serve as the numerical basis for the random
pattern. The execution of the program reveals, though, that
randomness is not the only essential element of 10 PRINT
(figure 25.2). Even when compared to the Apple II, the
TRS-80’s text display is poorly suited for the
transformation of typographical symbols into graphical patterns.
The Color Computer’s slash and backslash
characters each occupy a 5 × 7 region on a larger
grid of 8 × 12, leaving so much space between the
characters that they can never resolve themselves into the
suggestion of a connected pattern, much less a maze.
While the Apple II and Color Computer had many interesting BASIC
programs written for them and shares features with the Commodore
64, the way these computers handle text display means that neither
can host a one-line BASIC version of 10 PRINTthat
is as satisfying as the Commodore version.

PERL AND JAVASCRIPT: MODERN ONE-LINERS



Perl and JavaScript programs were devised that are parts of
10 PRINT and output the ASCII slash and backslash characters. The JavaScript
program is chiefly interesting because it presents a graphical, or
typographical, problem that is even worse than the ones seen on the
Apple II and the Tandy Color Computer. The default font on a Web
page, viewed in a graphical user interface browser, is
proportional — different letterforms have
different widths. While slash and backslash are the same width,
differences in kerning mean that the pair
“/\” is wider than either “//” or “\\”. So the two symbols do not line
up in a grid, and the result is even less like a maze.
A first version of the Perl one-liner follows; it’s shown in figure
25.3:
while (print int(rand(2)) ? "/" : "\\") {}
The “\” character (the backslash) is used in combination with another character in Perl to print special
characters such as the newline, which is indicated as “\n”. (The same is true in
JavaScript.) Because of this, it is necessary to use “\\” to print a single backslash
character. This Perl port uses the while construct to create an infinite loop. The condition of this loop prints
either “/” or “\” at random. The
print statement, which should always succeed, will return a value of 1,
corresponding to true — so the loop will always
continue. The body of the while
loop is empty; nothing else except printing a character needs to be
done, and that is already accomplished within the condition. The
resulting output is similar to that of the Apple II program: random
slashes are produced that line up in a grid but
don’t meet horizontally or
vertically.
[image: Screen capture of the ASCII Perl port of 10 PRINT, which uses the slash and backslash to approximate the diagonal lines.]

Figure 20-3. Screen capture of the ASCII Perl port of 10 PRINT, which uses the slash and backslash to approximate the diagonal lines.

[image: Screen capture of the Unicode Perl port of 10 PRINT, which uses characters 9585 and 9586 to better approximate the PETSCII characters.]

Figure 20-4. Screen capture of the Unicode Perl port of 10 PRINT, which uses characters 9585 and 9586 to better approximate the PETSCII characters.

There are a few ways to tweak this code to make it more like
10 PRINT in form and to have it produce output that is more like
10 PRINT’s. First, the somewhat obscure but more GOTO-like
redo statement can be used, causing the program to loop back to the beginning of its code
block, which is enclosed in curly braces, “{“ and “}”. Second, the Unicode characters
9585 and 9586 can be used to build the maze. These characters are
the two diagonal lines, similar to the PETSCII characters on the
Commodore 64, and like those characters they are also adjacent.
This means that a trick similar to 205.5+RND(1)
can be used to randomly select between them — in
this case, 9585.5+rand. That expression is used as an argument to
Perl’s chr function, just as the original BASIC program wraps it in the
CHR$ function. Finally, to avoid the production of error messages, a
statement needs to be included that tells Perl it can output
characters in Unicode. That statement could go outside or inside
the loop; the program just runs slightly slower, which is probably
desirable, if it is placed inside and executed each
time:
{binmode STDOUT,"utf8";print chr(9585.5+rand);redo}
While the original 10 PRINT produces a maze with gaps or thin connections at each grid point,
this maze (see figure 25.4) has what look like overlaps at each of
these junctures. Nevertheless, the use of
Unicode’s similar characters does a great deal
to enhance the appearance of the output.

PATH: MAZE AS PERVERSE PROGRAM



While computer users may think of programming languages as
relatively straightforward instruments used to produce increasingly
complex or efficient tools and experiences, 10 PRINT begins
to show that code itself can have aesthetic features.
Some programmers choose to reject — at least for a
while — the values of clarity and efficiency in
programming in favor of other values. While some of the techniques
such programmers use rely on the exploitation of conventions in
existing, “normal” programming
languages, others involve the invention of entirely new languages
with their own aesthetic properties. These “weird languages” (sometimes also
called “esoteric languages”) test the limits of programming language design and comment on
programming languages themselves. One them is the unusual-looking
language called PATH.
The sort of weird languages Michael Mateas and Nick Montfort (2005)
dub “minimalist” comment on the
space of computation itself. As they put it,
“Minimalist languages strive to achieve
universality while providing the smallest number of language
constructs possible. Such languages also often strive for syntactic
minimalism, making the textual representation of programs minimal
as well.” The archetypical minimalist language is
Brainfuck, which provides seven commands, each corresponding to a
single character of punctuation.
Another style of weird language eschews the usual organization into
lines of code and uses a two-dimensional space to hold a
program’s instructions. One such language is
Piet, whose source code resembles abstract paintings (like those by
its namesake, Piet Mondrian). Another is Befunge, which uses
typographical symbols including “<,” “v,” and “^” to direct program
flow.
PATH is a weird language that borrows from the conventions of
Brainfuck and Befunge, offering a syntactically constrained
language whose control flow takes place in a two-dimensional space.
PATH has a natural connection to 10 PRINT  because the language uses the slash and backslash characters to
control program flow. These symbols are reflectors in PATH. As the
program counter travels around in 2D space, it bounces off the
reflectors in the intuitive way.
In addition to “/” and “\,” PATH uses “v,” “^,” “<,” and
“>” to move the flow conditionally, down, up, left, and right, if the current memory
location is nonzero. Memory locations are arrayed on an infinite
tape Turing style, and the program can increment and decrement the
current memory focus.
Given PATH’s strong typographical similarity to
the output of 10 PRINT,
it is possible to implement a port of 10 PRINT in
PATH — a program that generates labyrinths by
endlessly walking a labyrinth (figure 25.5).
When the program is run, the result is similar to figure 25.3.
Confusing? The point of such a program, and such a programming
language, is to confuse and amuse, of course. Without understanding
the details of how this program works, one can still appreciate an
intriguing property it has. The output of 10 PRINT
in PATH is itself a PATH program. This new program
doesn’t do anything very interesting; it simply
moves the program counter around without producing any output.
Still, it demonstrates a general idea: that programs are texts, and
there is nothing to keep people from writing programs (such as the much less perverse compilers and
interpreters that are in continual use) that accept programs as
input and produce programs as output.
[image: The PATH port of 10 PRINT, an actual computer program written in an intentionally perverse programming language.]

Figure 20-5. The PATH port of 10 PRINT, an actual computer program written in an intentionally perverse programming language.


WHAT PORTING REVEALS



Porting a program is always an act of translation and adaptation.
As such, porting reveals what in a program is particular to its
source context, suggests many potential approaches to what is
essential about the program, and explores how that essence may be
portable to a specific target context. Each port is unique, whether
to a related platform, to a modern scripting language, or even to a
weird, minimalist language. Each involves different constraints,
and once realized each offers different insights. Sometimes these
insights are into the platform itself, such as when different
implementations of randomness require a change in how a value is
used or a calculation is done. At other times, the new insights may
be into the syntax of a particular language, which may afford more
or less elegant ways of expressing the same process. Other insights
may point to the permeable boundaries between a program and its
platform environment, as when the graphic qualities of a particular
character are vital to a particular visual effect. Porting to
radically different languages can also challenge deeper
paradigmatic assumptions about a program’s form
and function, including how and why output is produced and whether
it (in turn) becomes input of some kind. Taken together, the
combined insights of many ports may produce a new, different
understanding of the original source. Inhabiting the native
ecosystem of its platform, articulated in the mother tongue of its
language, ports clarify the original source by showing the many
ways it might have been other than what it is. Notably, many of
these insights are not available through token-by-token analysis of
code. They require closely considered reading, writing,
and execution of code.
Other ports of 10 PRINT are discussed in detail later in this book. Three of these,
discussed in the remark Variations in Processing, are versions of
the program that elaborate on the original and are written in the
system Processing. Two others ports are in assembly language,
written at the lower level of machine instructions and requiring
things to be implemented that are taken for granted in other ports.
The first of these, also
discussed in a remark, is for a system without character graphics
or, indeed, without typographical characters at all: the Atari VCS.
Finally, the last chapter introduces and explicates a Commodore 64
assembly version of 10 PRINT
to show some of the differences between BASIC and assembly
programming and to reveal more about the nature of the Commodore
64. These explorations all interrogate the canonical
10 PRINTprogram, asking what it means to try to write the same program differently
or to try to make a program on another platform the
same.

25. REGULARITY



[image: Vera Molnar, Untitled (Quatre éléments distribués au hasard). Collage on cardboard, 1959, 75 × 75 cm. This image was redrawn from the original collage to enhance the clarity of the design.]

Figure 25-1. Vera Molnar, Untitled (Quatre éléments distribués au hasard). Collage on cardboard, 1959, 75 × 75 cm. This image was redrawn from the original collage to enhance the clarity of the design.

In 1959 artist Vera Molnar created Untitled (Quatre éléments distribués au hasard),
a collage similar to 10 PRINT (figure 30.1). A variant of the 10 PRINT
program shipped with the first Commodore 64s in 1982 (figure 30.2).
And in 1987, Cyril Stanley Smith more or less recreated
10 PRINT’s output from a reduced, random arrangement of Truchet tiles (figure
30.3). How did the same essential mazelike pattern come to appear
in all of these different contexts in the twentieth
century?
[image: Random maze program from the Commodore 64 User’s Guide, 1982.]

Figure 25-2. Random maze program from the Commodore 64 User’s Guide, 1982.

[image: Truchet’s four tiles placed in random orientations by Cyril Stanley Smith in 1987. The solid coloring was removed to show the formal connection to the 10 PRINT pattern.]

Figure 25-3. Truchet’s four tiles placed in random orientations by Cyril Stanley Smith in 1987. The solid coloring was removed to show the formal connection to the 10 PRINT pattern.

The repetitions of the 10 PRINT process are connected to two categories of artistic tradition and
to the flow of control in computer programs. The first tradition
within the arts is in the domain of craft, particularly
pattern-based crafts such as needlework and ornamental design. The
second is the creation of complex patterns using repeated
procedures and a small number of elements. In this way, the
aesthetic of 10 PRINT parallels experiments in painting, sculpture, sound composition, video art,
performance, experimental animation, and dance. In both cases,
these artistic practices owe their success to factors that also
make 10 PRINT compelling: the continual repetition of a simple rhythmic procedure
or rule across a regular space or time signature creating a complex
and stimulating gestalt. In its minimalist and constructivist
strains the world of art confronts the constraints and regularity
of the technē of programming, which makes room for a formal definition of a
repeating process that a computer can carry out. In all of its
newfangled (for the 1980s) sophistication, 10 PRINT
ties the computer to the homespun tradition of handicraft:
stitching, sewing, and weaving.
This intersection of design craft, art, and computation is not
accidental, for 10 PRINT is a demonstration of the generative qualities of repeated
procedure. 10 PRINT was written and published at a time when the art world was turning
to explore the constraints and possibilities of the systematization
of creativity in an age of Taylorism and Fordism, of which the
computational machine is itself an expression. Situating
10 PRINT not only within twentieth-century art, but also in the larger
traditions of formal experimentation and craft culture can help to
explain how the personal computer is a site of procedural
craft.
This chapter explores the first of two formal aspects of the
10 PRINT program that give it its compelling visual power. This chapter
focuses on regularity, while the next one deals with randomness.
Although the pattern of 10 PRINT
cannot be established at a glance, the program is nothing if not
regular. It works regularly in space, time, and
process — and each of these aspects of regularity
is examined in the discussion that follows. Spatial regularity is
considered, beginning with tilings, continuing through the history
of the grid, and ending with a discussion of the computer screen.
Artistic repetition in time, particularly in music and performance,
is considered next. Then, repeating processes and the programming
constructs that support them are discussed.
REPETITION IN SPACE



In a classic, provocative text, The Sense of Order,
E. H. Gombrich (1994) wrestles with the tensions between pleasing
repetition and uninteresting redundancy. As he reflects on pavement
designs he notes the pleasure in encountering one whose pattern
cannot be fully grasped. Gombrich explains this desire for
variation or complexity in terms of the information theory emerging
at the time, which posits that information increases in step with
unpredictability (9). He goes on to speculate that the viewer
examines patterns by trying to anticipate what comes next.
“Delight,” he writes, “lies somewhere between boredom and
confusion” (9). Consider, again, the Labyrinth at
Chartres as one such balance of the two.
10 PRINT no doubt offers similar delights, thanks to its creation of a
complex pattern from a simple random alternation. As Gombrich later
argues, the greatest novelties computers bring to visual design and
variation are not only their ability “to follow
any complex rule of organization but also to introduce an exactly
calculated dose of randomness” (1994, 94). In this
view, computers prove to be entrancing weavers, and the design
of 10 PRINT, as a work of pattern rather than paths, may be less like the work
of Daedalus than that of Arachne.
Patterns are inextricably tied to a process of repetition. This
notion is clearly demonstrated in Gombrich’s
commentary on “the hierarchical principle” by which units are
“grouped to form larger units, which in turn can
easily fit together into larger wholes” (1994, 8), or
a gestalt. The sum of the pattern then is the result of a process. This
interrelationship of pattern, perceived whole, and process becomes
clear in his discussion of paving and of various methods for
selecting stones. By extension, visual design relies on the process
of repeating patterns across space, even if these patterns are not
drawn as individual units. The regulated backdrop or foundation of
these orderly patterns in Euclidean space is the grid.
The grid provides a framework within which human intuition and
invention can operate and that it can subvert. Within the chaos of
nature, regular patterns provide a contrast and promise of order.
From early patterns on pottery to geometric mosaics in Roman baths,
people have long used grids to enhance their lives with decoration.
In Islamic culture, the focus on mathematics and prohibition on
representational images led to the most advanced grid systems of
the time, used to decorate buildings and
religious texts. Grids have also long been used as the basis for
architecture and urban planning. For example, it is impossible to
imagine New York, the one-time city of the future, without the
regular grid of upper Manhattan. (Broadway breaks this grid in ways
that form many of the city’s most notable public
spaces.) The grid is also the basis for our most intellectual play,
from chess to go, whether the design submits to or reacts against
it.
The grid has proved essential to the design of computers from the
grid of vacuum tubes on the ENIAC (1946) to the latest server farms
that feed data to the Internet. A new era of more reliable
computing was spawned in the 1950s by a grid of ferrite rings
called core memory (figure 30.4). This technology works by
addressing each ring on the grid to set its charge to clockwise or
counterclockwise to store one bit of information. Because the
information is stored as a magnetic force, it maintains its state
with or without power. The grid is an essential geometry of
computation.
The two-dimensional regularity of the grid is essential to the
impact of 10 PRINT,
as removing a single character from the program reveals. Taking out
the semicolon that indicates that each character should be drawn
immediately to the right of the previous one, the symbol that wraps
the program’s output continually rightward
across the screen, makes the importance of the grid clear (see
figure 30.5):
10 PRINT CHR$(205.5+RND(1)) : GOTO 10
As a column of diagonal lines, the output does not form a maze and
the vibrant pattern that encourages our eyes to dance across the
screen is not established (figure 30.5). The essential process
of 10 PRINT in time is a single, zero-dimensional coin flip to pick one of two
characters; when this recurs in time, it becomes a one-dimensional
stream of diagonal lines that either flows quickly down the left
side (if the semicolon is omitted) or moves right to wrap around to
the next position below the current line and to the left. The
visual interest of this program results from wrapping this
one-dimensional stream of tiles into the two-dimensional
grid.
Truchet Tiles



Imagine the diagonal character graphics in 10 PRINT
are painted on a set of square ceramic tiles, of the sort used for
flooring. Each tile is painted with a black diagonal line dividing two white triangles. A tile can
be rotated in two orientations, so that the diagonal line appears
to be a backslash or a forward slash. Now imagine painting one of
the two triangles black. Each tile can now be rotated in four
different orientations, like a black arrow pointing at each of four
corners. Repeatedly placing tiles down in the same orientation will
create a pattern (figure 30.6). Two tiles can be placed next to
each other to create one of sixteen unique formations, and laying
down any such pair repeatedly will again produce patterns. Indeed,
any unique grouping of tiles (whether 2 × 1, 4
× 4, etc.) can serve as a building block for larger
regularity.
[image: Magnetic core memory.]

Figure 25-4. Magnetic core memory.

[image: This screen capture from the 10 PRINT variation without the semicolon shows the importance of the two-dimensional grid as a defining characteristic of the program.]

Figure 25-5. This screen capture from the 10 PRINT variation without the semicolon shows the importance of the two-dimensional grid as a defining characteristic of the program.

Now, imagine a whole floor or tapestry covered with a regular
pattern of these repeating tiles. This thought exercise suggests
the power of the Truchet tile, so named because the Dominican
priest Sebastien Truchet first described what he called the
“fecundity of these combinations” in
1704, after experimenting with some ceramic tiles he came across at
a building site for a château near
Orléans (Smith and Boucher 1987, 374).
Matching a single Truchet tile with another, and another, and
another, and so on, a designer is able to create an incredible array of
patterns. The interplay between the direction of each tile and the
varying repetition of black and white — of
positive and negative — produces symmetrical
designs that can range from grid-like patterns to mesmerizing,
almost three-dimensional illusions. Unlike earlier, Islamic
patterns or Celtic designs, which both relied on multiple-sized
shapes, the Truchet tile uses only a single size and a single shape
(Smith and Boucher 1987, 378). In his original 1704 essay, Truchet
provides examples of thirty different patterns, barely evoking the
aesthetic possibilities of his tiles, though he notes that he
“found too great a number to report them all” (374). Truchet’s work would be
the inspiration for a later book, Doüat’s modestly named
Methode pour faire une infinite de desseins differents . . . [Method for Making an Infinity of Different Designs
. . .] which in turn had a considerable impact on
eighteenth-century European art (373).
Yet all of Truchet’s and Doüat’s examples are regular
patterns, symmetrical and repetitive. The historian of science
Cyril Stanley Smith observed in 1987 that even more compelling
designs can be generated from Truchet tiles if dissymmetries are
introduced. What happens when the regularity of a Truchet pattern
is interrupted by randomness? Smith provides one example, a block
of Truchet tiles arranged at random (figure 30.3). The lattice of
the basic grid is still visible, but randomness has made its mark,
leaving imperfections that disrupt any nascent pattern. Unlike the
symmetrical examples Truchet and Doüat give, there
is no resolution to the structure. The center cannot hold, and
neither can the margins. Smith next pushes the limits of the
Truchet tiles’ regularity by omitting solid
coloring from the tiles, leaving only the black diagonal line. The
four possible orientations of any given tile are then reduced to
two.
These modified Truchet tiles generate a design that looks
unmistakably like the output of 10 PRINT,
a program published a half decade before Smith and
Boucher’s article. The grid still
remains — indicating the edges of each
tile — but the diagonals no longer seem to bound
positive or negative space. Instead, they appear to be the walls of
a maze, twisty little passages, all different. In this Truchet
tile-produced artifact the dynamic between regularity and its
opposite come into play, suggesting that regularity is not an
aspect of design that exists in isolation, but rather can only be
defined by exceptions to it, by those moments when the regular
becomes irregular. Rather than celebrating that 10 PRINT
“scooped” Smith,
[image: Patterns from Sébastien Truchet’s “Mémoire sur les combinaisons,” 1704. Each 12 × 12 pattern redrawn above is constructed from smaller patterns using one tile design, half black and half white cut across the diagonal.]

Figure 25-6. Patterns from Sébastien Truchet’s “Mémoire sur les combinaisons,” 1704. Each 12 × 12 pattern redrawn above is constructed from smaller patterns using one tile design, half black and half white cut across the diagonal.

[image: Examples of litema patterns from South Africa. These patterns are typically etched into the plastered mud walls on the exterior of homes. The patterns are constructed by repeating and rotating a single square unit.]

Figure 25-7. Examples of litema patterns from South Africa. These patterns are typically etched into the plastered mud walls on the exterior of homes. The patterns are constructed by repeating and rotating a single square unit.

[image: Examples of stitchwork from The Square Pattern technique from The Young Ladies’ Journal Complete Guide to the Work-table.]

Figure 25-8. Examples of stitchwork from The Square Pattern technique from The Young Ladies’ Journal Complete Guide to the Work-table.

it seems appropriate to note that there are several ways up the
mountain —  or into the maze — of this particular random and regular pattern; one was discovered at
Commodore, another by taking a mathematical perspective on tiling
patterns and their aesthetics.

Textiles and Craft



The experiments of Truchet and Doüat did not
introduce the idea of creating patterns out of simple variations on
shapes. Such practice is commonplace across many forms of design,
particularly in the realm of ornament, where both regular and
irregular patterns have long been created. Franz Boas documented
compelling examples of theme and variation of Peruvian weavers, for
example (cited in Gombrich 1994, 72). The Kuba of Zaire create
patterns of a complexity that has puzzled electrical engineers,
patterns with the mazelike passageways of 10 PRINT
and yet of a far greater intricacy (Huang et al. 2005). Or consider
the murals of the Sotho women of South Africa, decorative geometric
murals known as litema
(figure 30.7). This technique, documented as early as 1861,
involves assembling networks of squares made of painted mud and
etched with fingers and sticks (Gerdes 1998, 87–90). In fact, the decorative
arts have long held this secret to 10 PRINT.
Such techniques are detailed in the examples of fancy work in the
1885 The Young Ladies’ Journal Complete Guide to the Work-table
(figure 30.8). The examples therein demonstrate the orthogonal
basis for stitchwork that is evocative of the grid of the computer
screen.
The hundreds of techniques define patterns ranging from simple
grids to complex emergent patterns. As Mark Marino argues elsewhere
(2010), these pattern books and instructive texts, primarily aimed
at young women, provided models of fundamental processes similar to
the role of the computer manuals and magazines such as
RUN. Many of the techniques result from a repeated process with
instructions, similar to that indicated by a computer program. For
example, the Square Pattern technique (figure 30.8) in the Fancy
Netting chapter is defined as a pair of operations that are
repeated:
No. 6. —  SQUARE PATTERN



For this pattern: — 

1st Row: Work one plain row.

2nd Row: One ordinary stitch, and twist the thread twice round for

the large square. Repeat to the end of the row.



The first and second rows are repeated alternately. Arrange the stitches

so that a long stitch always comes under a short stitch.



Such examples demonstrate that while the systematic theorization of
patterns such as the one produced by 10 PRINT may
emerge periodically, the production of those patterns is deeply
woven into the traditions of decorative craft. The fundamental role
of shared techniques for process and pattern place computer
programming squarely in the realm of technē,
artistic craft. As in the Commodore 64 User’s Manual,
this text promotes the execution of a set of instructions collected
as a technique. On the surface, the parallels between teaching
needlecraft and programming are striking. The programmers, however,
are not taught to repeat the procedure but instead, initially, to
repeat a formal description of the procedure by typing it into the
machine — which then does the repeating for them.
It is the very automation of the process that makes 10 PRINT possible; the program
operates less like handy stitching and more like the machinery of the Jacquard Loom.
Prior to that loom, during or near the second century BCE, China
gave birth to a loom “that made it possible to
create a pattern in fabric . . . called a drawloom because [it]
allowed the warp threads to be drawn up individually to create the
design to be woven” (10). That loom, however, was
irregular: “the arrangement of the individual
warp threads was different for every single row of
weaving” (10). By contrast, the loom designed by
Joseph-Marie Jacquard was regular and programmable (12). Such a
machine relied on an exacting degree of regularity. Of course, much
has been made of the Jacquard Loom as the prototypical computer,
for example James Essinger’s book
Jacquard’s Web: How a Hand-Loom Led to the Birthof the Information Age
(2004). The core similarity in these early accounts were the punch
cards, which were automatically applied to the control system and
which served as patterns for the loom to follow. Earlier punch card
looms have been discovered and attributed to J. B. Falcon, B.
Bouchon and Vaucanson, whose invention of a mechanical duck is a
bit more widely known (Zemanek 1976, 16). According to Essinger,
Falcon’s punch cards were “clumsily made and unreliable” (36).
Commercial-grade textiles require up to four thousand cards strung
together — a far cry from the two statements on the one line of 10 PRINT
(figure 30.9). The cards are applied to a bar, an
“elongated cube,” full of “hundreds of identical holes . . . to
accommodate the tips of needles,” which are raised
according to the selections on the punch card. As the bar turns
with each pick of the shuttle, it moves down the material as if
moving down a computer screen. Regularity made it possible for the
Jacquard Loom to draw its intricate patterns. But the use of the
cards as a pure pattern and the inability to regulate the flow of
control meant that patterns have to be defined exhaustively rather
than through concise programs. In other words, the number of cards
is proportional to the size of the pattern being woven. While
needlework instructions demonstrate the role of repeated process
and pattern over somewhat regulated space, the loom regulates time
and space without, in effect, repeating the process.
10 PRINT can be imagined as the complete method of craft programmed into the
computer — as it was not fully programmed into the
loom. The loop offers a way for the weavers of the computer screen
to shift their emphasis from a fixed template, traversed once, to a
more intricate model of process. 10 PRINT demonstrates
the power of the computational machine to rapidly prototype a
repeated pattern, and since it executes the pattern itself, the
incipient programmer is freed to experiment with variations and
extensions of that process.
[image: Punch card-operated loom at the Sjølingstad Uldvarefabrik in Sjølingstad, Norway. Courtesy of Lars Olaussen, Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic.]

Figure 25-9. Punch card-operated loom at the Sjølingstad Uldvarefabrik in Sjølingstad, Norway. Courtesy of Lars Olaussen, Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Generic.



THE GRID IN MODERN ART



In the 1960s and 1970s, artists moved away from abstract
expressionism, the dominant current of the 1950s, and its
preference for raw emotion. Newer movements such as op-art and
minimalism along with the continued line of constructivism in
Europe engendered a body of rational, calculated visual art that
utilized grids and even spacing to define order. A tour through any
major American modern art museum will reveal Frank
Stella’s canvases of regular lines, Ad
Reinhardt’s hard-edge grids of barely
distinguishable tones, Carl Andre’s grids of
metal arranged on the floor, Donald Judd’s
regularly spaced steel fabrications, Dan Flavin’s florescent
matrices, and Agnes Martin’s exquisite, subtle
grids on canvas. This list could continue for pages as it moves forward in history; the
point has no doubt been made. This American tendency to move toward
minimal forms was expressed well by Ad Reinhardt in
“Art-as-Art” in 1962: “The one object of fifty years of abstract art
is to present art-as-art and as nothing else, to make it into the
one thing it is only, separating and defining it more and more,
making it purer” (Rose 1991, 53).
In Europe at the same time, a massive number of artists were
working with grid systems, and they were often doing so with more
explicit focus and rigor. This energy was frequently channeled into
groups that formed in different cities. For example, there was GRAV
(François Morellet, Julio Le Parc, et al.) in Paris,
ZERO (Heinz Mack, Otto Piene, et al.) based in
Düsseldorf and extending a wide net across Europe,
The Systems Group (Jeffrey Steele, Peter Lowe, et al.) in London,
and the Allianz in Zurich (Max Bill, Richard Paul Lohse, et al.).
The most iconic artist to work with grids might be the optical
artist Victor Vasarely, whose grids were mesmerizingly distorted.
His work was so systemized that he invented a notation system to
enable a team of assistants to assemble his works using
instructions and modular, prefabricated colored pieces. Although it
is difficult to discern by just looking at the work, there was
tension between the artists who worked toward the primacy of mathematical form and those who maintained a
desire to imbue subjectivity and emotion in their geometric
compositions.
In critiquing of the former category of art, Ferreira Gullar, a
Brazilian poet and essayist, wrote the 1959
“Neo-Concrete Manifesto” declaring
that it was dangerous for art to be concerned only with
“objective problems of composition, of chromatic
reactions, of the development of serial rhythms, of lines or
surfaces” (Zelevanksy 2004, 57).
Gullar’s manifesto harkens back and reimagines
works of the early twentieth century by artists such as Wassily
Kandinsky, Kasimir Malevich, and Alexander Rodchenko. Within the
specific context of the grid, pioneers Piet Mondrian, Theo Van
Doesburg, and other artists affiliated with De Stijl abandoned
representation entirely. Van Doesburg et al. coined the term
“concrete art” to categorize works
that are conceived without reference to nature and symbolism. The
manifesto “The Basis of Concrete
Painting” published in April 1930 stated,
“The work of art should be fully conceived and
spiritually formed before it is produced. It should not contain any
natural form, sensuality, or sentimentality. We wish to exclude
lyricism, dramaticism, symbolism and so forth” (Fabre
and Wintgens Hotte 2009, 187). Van Doesburg continued in
“Elementarism (The Elements of the New
Painting)” from 1932: “One must not
hesitate to surrender our personality. The universal transcends it.
. . . The approach to universal form is based on calculation of
measure and number” (187). Representative works such as
Mondrian’s Composition with Red, Blue, Black, Yellow, and Gray (1921) and Van Doesburg’s Counter-Composition VI
(1925) were composed exclusively with orthogonal lines to form a
grid. Works from this time also experiment with rotating the grid
45 degrees to create a more dynamic composition. This formal
technique manifests itself, of course, in 10 PRINT.
While the 10 PRINT program came out of the computer culture and not the art world, it
has an uncanny visual resemblance to prior works of
twentieth-century art. Paul Klee, a Bauhaus professor and highly
influential artist (1879–1940), produced works
in the 1920s that seemed to resume Truchet’s and
Doüat’s experiments. In his concise Pedagogical Sketchbook,
published in 1925, Klee presents his thoughts on quantitative
structure, rhythm, repetition, and variation. His
Variations (Progressive Motif),
painted in 1927, demonstrated his theories as a visual composition.
He divided the 40cm-square canvas into a grid of nine units, where
each unit contains a pattern of parallel lines, with some
exceptions, which run vertical, horizon-tal,
or diagonal. More insight into this painting is found in his
notebooks, as published in The Thinking Eye
in 1964. Klee discusses the difference between natural and
artificial measurement as the difference between idiosyncratic and
rational order. More important, he discusses tension and dynamic
density through the linear and progressive spacing of parallel
lines. Through these visual contrasts in Variations,
Klee explores the same aesthetics questions that can arise
from 10 PRINT.
First he created an artificial grid to work within; then he
populated each square with ordered but variable patterns. Klee
didn’t have the advantage of motion that is
afforded to 10 PRINT,
but he simulated it through the expansion and contraction of
parallel lines within his grid.
In France, a group of like-minded artists within and around GRAV
(Groupe de Recherche d’Art Visuel) were
exploring variations within grids. François Molnar and
Vera Molnar worked on a series of images in 1959 that presented a
visual system strikingly similar to 10 PRINT.
In the essay “Towards Science in
Art,” published in the anthology DATA: Directions in Art, Theory and Aesthetics
in 1968, François Molnar published the images
Simulation d’une série de divisionsde Mondrian à partir de trois au hasard and Quatre éléments auhasard.
Both are 24 × 24 unit grids with one of a few
possible forms painted into each grid unit with black gouache. As
the titles suggest, a random process defines the elements in each
square. Their Composition Stochastique
of the same year systematizes the random component by producing a
modular set of two elements — left and right
diagonals that are placed within a 10 × 10 unit grid.
In the illustrations for the essay, they feature a 1 percent, 5
percent, 30 percent, and 50 percent ratio of left to right diagonal
lines to show the result of chaos intruding upon order. Given that
this is a 100 unit grid, these percentages correspond to precisely
1, 5, 30, and 50 units in each figure. In the 50 percent figure,
the only substantive difference with our 10 PRINT
program is the variation on the core elements. So, just as a
mathematician independently described the output of
10 PRINT in 1987, a team of artists working in Paris produced the fundamental
algorithm for 10 PRINT in 1959 — twenty-three years prior to the printing of
the Commodore 64 User’s Guide.
In her 1990 essay entitled “Inconceivable
Images,” Vera Molnar wrote that she was thinking
about Composition Stochastique
as a computer program, because she had access to a
machine:
To genuinely systematize my research series I initially used a
technique which I called machine imaginaire. I imagined I had a
computer. I designed a programme and then, step by step, I realized
simple, limited series which were completed within, meaning they
did not exclude a single possible combination of form. As soon as
possible I replaced the imaginary computer, the make-believe
machine by a real one.


Across the Atlantic in the 1960s the American artist Sol LeWitt
embarked on decades of work exploring grids and regular structures.
In 1968, LeWitt started making drawings directly on walls, rather
than on paper or canvas that would be placed on the wall. In this
return to the scale of frescos, his drawings within grids
integrated into architecture to transform the space (Singer 1984).
His Wall Drawing 291
from 1976 is a striking work, with a strong similarity to
10 PRINT. Instead of the binary decision within 10 PRINT,
LeWitt’s drawing allows for horizontal and
vertical lines, to create four choices for each grid element.
LeWitt’s work is encoded as an
algorithm — another similarity with
10 PRINT. A difference is that the instructions are in English, rather than
BASIC:
291. A 12” (30cm) grid covering a black wall. Within each
12” (30cm) square, a vertical, horizontal, diagonal
right or diagonal left line bisecting the square. All squares are
filled. (The direction of the line in each square is determined by
the draftsman.)


This grid-based wall drawing wasn’t an isolated
work within LeWitt’s output. He created dozens
of similar drawings, each with slightly different rules and
allowing for varied lines including arcs and dotted
lines.
While many artists and critics in the twentieth century were
clearly obsessed with the grid, not all have celebrated it. The
critic Rosalind Krauss put the grid into a different context in her
1979 essay “Grids” (Krauss 1979).
She acknowledges the proliferation of the grid but criticizes it as
a dead end: “It is not just the sheer number of
careers that have been devoted to the exploration of the grid that
is impressive, but the fact that never could exploration have
chosen less fertile ground.” She continues,
“The grid declares the space of art to be at
once autonomous and autotelic.” Through pursuing pure
visual exploration like variations on grids, Krauss argued
that the visual arts abandoned narrative and discourse and moved into
cultural isolation.


SCREENSAVERS AND COMPUTER DREAMS
While no one has ever claimed that 10 PRINT
might be used as a screensaver to prevent phosphor burn-in on CRT
monitors and televisions, its noninteractive, endlessly looping
nature coupled with its pleasing and changing image make it a close
cousin to this type of program. If one had to place
10 PRINT into a familiar software category,
“screensaver” would not be a bad one
to choose.
The earliest screensaver dates to 1968, when researchers at
Stanford University programmed the text “Take
Me, I’m Yours” to appear at random
locations on an open terminal screen of
Stanford’s Artificial Intelligence
Lab’s time-sharing system, signaling the
terminal was free to use. In 1973, engineers at the famed Xerox
PARC lab created screensavers with bouncing and zooming graphics,
moving screensavers beyond mere text (Davenport 2002, 65). In the
early 1980s, commercial screensavers followed, such as Berkeley
Systems’ bestselling After Dark
collection. By the height of the screensaver craze in 1996, the
design of computer monitors made phosphor burn-in nearly
impossible. Yet screensavers lived on in roles that went beyond
their original utilitarian or aesthetic function. The SETI (Search
for Extraterrestrial Intelligence) project released software for
PCs that harnessed unused computer cycles to process radio waves
from outer space — all the while displaying a
screensaver on the computer display. Along different lines, Nancy
Davenport created the “May Day”
screensaver that captures the repetitive and often image-based
nature of contemporary political protests.
There are provocative parallels of the screensaver in the history
of art. David Reinfurt (2009) considers a wide variety of moving
visual and mechanical pieces, including Marcel
Duchamp’s Precision Optics
projects, Alexander Calder’s mobiles, phased
oscilloscope displays, Brion Gysin and Ian
Sommerville’s Dreammachine,
and generated visual and sound art. Reinfurt sought to find
interesting connections and not to trace a genealogy or demonstrate
influence, but there appears to be a compelling pre-war antecedent
of these programs.
Perhaps the most intriguing protoscreensavers are found even
earlier, in the form of Duchamp’s 1933 Rotoreliefs.
This set of six discs, each printed on both sides with offset
lithography, allowed the purchaser to do something with a 33 RPM
turntable when it was not being used for its primary purpose:
listening to music. Of course, the disc caused additional wear on
one’s turntable and did not “save” it, but screensavers have
seldom been truly valued as savers. Just as a screensaver pack
offers several options to suit the mood of the non-computer-using
viewer, Rotoreliefs offered twelve options for the viewer, the nonlistener. One side of
the third disc features “Poisson Japonais” and — just as the
screensaver would later make the monitor into a simulation of a
fish tank — makes the turntable into a fish
bowl.
This twist on the electronic device (initially the turntable, later
the television or computer monitor) calls attention to its being a
piece of furniture; it also simulates the activity of a living
creature using electricity and technology. It shows us our powerful
media technologies made mute, circling, and amusingly off-kilter.
The relationship to technology that is suggested by the aquarium
screensaver (or fish Rotorelief) is one of odd juxtaposition and
low-key looping motion, probably not far off from the effect of
spinning a bicycle wheel that has been fixed in a stool.
One very emblematic screensaver combines life and technology in an
even more curious way. In Berkeley
Systems’ After Dark 2.0, the “Flying Toasters” screen-saver
features toasters flitting across the screen using their small
(birdlike) wings. The toaster, that single-purpose device used only
to cause bread to undergo the Maillard reaction, drifts lazily
through space alongside . . . pieces of toast. This screensaver
suggests that androids do
dream of electric sheep and that computers, when they snooze, have
visions of lower forms of technology in flight. The
After Dark 2.0 toasters, remarkably, are not pure technological
artifacts — they are cyborg toasters with organic
wings. While the scene they take part in is amusing, it also at
least risks calling attention to the limitations of the computer,
which, despite its general-purpose capabilities, does not help to
prepare food, is entirely inorganic, and, of course, does not fly.
The computer may be capable of symbolic manipulations and machine
dreams, but there are realms into which it cannot go, realms
towards which it is left to aspire. Perhaps all of this is not
imagined by the average computer nonuser observing toasters in
flight, but any of it which is will contribute to the absurdity of
the image and the pleasure of the onlooker.
Some screensavers create very abstract patterns that have no simple
interpretation, even as something like an abstract maze. Others,
like the early Windows “Starfield” and the Windows 95 “Maze” (which
shows movement through a 3D, RPG-like maze) suggest that the
computer is a vehicle for exploration. These screen-savers live
alongside those that play with our perceptions of life, inviting us
to think about how technologies relate to creatures like fish and
birds. But in addition to all of these, there are screensavers that accumulate structures in a
way that suggest industrious, technical production. The Windows 95
“Pipes” screensaver is a fairly famous example. It assembles 3D tangles of multicolored pipes which
become impossibly dense and intricate. This screensaver does more
plumbing work in a few minutes than Nintendo’s
Mario has done in his lifetime. The busy visuals show that the
computer is hard at work, even though its user is not interacting
with it. While the image is pleasing to look at, it also projects a
more serious image than the frivolous flying toaster or simulated
fish tank.
While 10 PRINT is extremely abstract, its generation process seems to be one of
furious and constant construction. 10 PRINT
suggests that the computer is a maker of structures, is tireless at
producing these at a regular rate, and can create patterns that are
both pleasing to view and perplexing to walk through. While the
Windows 95 “Maze” screensaver
provides the viewpoint of Theseus (or perhaps the Minotaur),
10 PRINT shows us the maze as seen by Daedalus: from the
mind’s eye of the architect, the viewer shares
the imagination of a structure that is continually in the process
of being built.



During the era of our 10 PRINT
program, in wake of the Vietnam war and social movements of the
late 1960s and early 1970s, the larger emphases within visual arts
communities had moved away from minimal-ism and constructivism (and
their variants) to focus back on expressive and realistic painting
and the emerging acceptance of photography. The visual work created
for early home computers and games systems like the Atari VCS and
Commodore 64, however, were highly constrained by the technical
limitations of the hardware and therefore had more in common with
the visual art of prior decades.
A chief explanation for these uncanny similarities is the grid
itself. In “Designing Programmes,” the Swiss designer Karl Gerstner (1964) asks,
“Is the grid a programme? Let me put it more
specifically: if the grid is considered as a proportional
regulator, a system, it is a programme par excellence.”
Gerstner’s encounters with the computer led him
to theorize the regulated space as a program itself. The grid systematizes artistic
creation even as it presents a challenging and yet generative
platform for experimentation, whether on canvas, the dance floor,
or a computer screen.

THE COMPUTER SCREEN



While the traditions of twentieth-century art and earlier craft
traditions are significant for 10 PRINT,
the program functions the way it does because of the circumstances
of technology, the history of the Commodore 64’s display, and the
types of regularity it supports. Again, the grid acts as a program
to determine the final output.
The Commodore 64’s video image is a grid 320
pixels wide and 200 pixels tall. This accommodates an array of
characters or, in the terminology of Commodore 64 hi-res graphics,
attribute cells. Specifically, the grid is 40 attribute cells wide
and 25 high. (There are other graphics modes that offer advantages,
but for understanding 10 PRINT, this array of characters or
attribute cells is most important.) The 40 × 25 grid
contains exactly 1,000 characters, each represented by a byte. This
fits nicely into one kilobyte (which equals 1024
bytes) — in fact, it is the largest grid that is
forty characters wide and occupies 1024 bytes or less.
Economically and conveniently, the Commodore 64 could be taken out
of its box and hooked to an ordinary television. It was an idea
that could be seen in Steve Wozniak’s Apple I,
introduced in April 1976. Later, the more widespread Apple II could
also be connected to a television if one used an inexpensive RF
modulator, purchased separately. (This component was left off the
Apple II as a workaround; the FCC would not otherwise approve the
computer, which would have produced too much interference.) The
Apple II was the main precedent in home computing —  other early home computers such as
the TRS-80 Model II and Commodore PET had built-in
monitors — but the idea was not original to Apple.
At Atari, television engineer and employee #1 Al Alcorn had
designed a Pong cabinet that, rather than using an expensive commercial CRT
(cathode ray tube), incorporated an ordinary black-and-white
television that was initially bought from a retail store. Wozniak,
who did the original design for the Atari arcade game
Breakout, knew about this trick of using a TV as a monitor. Videogame
consoles (including Atari’s 1977 VCS, later
called the Atari 2600, and the Magnavox Odyssey by Ralph Baer, introduced in
1972) would typically hook to televisions, too.
The rectangular form of the television image had its origins in the
movie screen, which was rectangular due to the material nature of
film and apparently obtained its 4:3 aspect ratio thanks to a
gesture by Thomas Edison, one which resulted in a frame that was
four perforations high. While the aspect ratio of film changed and
diversified over the years, television in the United States
(standardized in the NTSC format in 1953) and many computer
monitors, through the 1980s and 1990s, used the 4:3
ratio.
Although composite monitors were available for the Commodore 64,
the relationship between that system and the television was clear
and was the default for those setting up their computer and hooking
it up to a display. For a Commodore 64 purchased in the
United States, the system’s video output usually
terminated in a NTSC television. But the computer display did not
begin there: it has a heritage that included at least two output
methods, ones that seem unusual today.
As one of this book’s ten coauthors has noted,
“Early interaction with computers happened
largely on paper: on paper tape, on punch cards, and on print
terminals and teletypewriters, with their scroll-like supplies of
continuous paper for printing output and input both”
(Montfort 2004). The standard output devices for computers through
much of the 1970s were print terminals and teletypes. Output was
not typically produced on pages of the sort that come from
today’s laser printers, but on scrolls of
standard or thermal paper. The form factor for such output was not
a standard 81/2 × 11-inch page, but an essentially
endless scroll that was typically 80 columns wide.
Teletypes were used to present the results of the first BASIC
programs written at Dartmouth in the 1960s, and they were the
typical means of interacting with important early programs such
as Eliza and Adventure.
With such a system for output, there was no need for an
automated means of saving and viewing the
“scrollback” — a user could actually pick up the scroll of output and look at it. Of
course, this sort of output device meant that animation and other
effects specific to video were impossible.
An argument has been advanced that the modern computer screen also
has an important heritage in the round CRT display of the radar
screen (Gere 2006). The SAGE early warning system, the PDP-1, and
the system on which Douglas Engelbart did the
“mother of all demos” all sported round CRTs, as did early televisions. It is notable that the first
two systems that may have been videogames in the modern
sense, Tennis for Two by William Higginbotham and Spacewar
by Steve “Slug” Russell, Martin “Shag” Graetz, Alan Kotok, and
others were both created for circular CRT displays. While radar and
some other images were actually round, as the early cathode ray
tube was, the television signal and the page were not. What was,
for radar, a radial display eventually gave way in computing to the
rectangular, grid format that was adhered to by both page and
television image.

REPETITION IN TIME



While 10 PRINT would be impossible without the regularity of space, it would also
be wholly other without regularity of time and process. The program
is as much the product of ordered isometric shapes across a grid as
it is the repeated placement of those shapes. Gombrich notes that
“Everything . . . points to the fact that
temporal and spatial orders converge in our experience. No wonder
language speaks of patterns in time and of rhythms in
space” (1994, 10). He continues to examine simple
mechanical temporal rhythms from the pendulum’s
swing to the turn of the cog. As a bridging example between
spatiality and temporality, he notes the way a regular
configuration of stairs’ height and depth in a
staircase lead to a regular climb up the steps.
As Gombrich develops the notion of temporal repetition and
regularity, he quickly transitions into a discussion of process.
Whether a clock ticking or a person climbing the stairs, the
temporal regularity is the result of a repeated process. Gombrich
then moves to a discussion of work, by referencing K.
Bucher’s Work and Rhythm, which insists “on the need for timed movement in
the execution of joint tasks,” for example workers
loading bricks onto wheelbarrows (Gombrich 1994, 10). The ticking
clock does more than set the hours of labor on the factory floor:
it epitomizes the regular movement of the workers. Gombrich
continues, “And here again it is not only the
simultaneous movement that is ensured by rigid timing. Even more
important is the possibility inherent in any order of constructing
a hierarchy of movements or routines to ensure the performance of
more complex tasks” (10). This formulation suggests the
relationship between regulated time and instruction, hierarchies of movements and
routines, which recalls Taylorist models of production as well as
programming. While a full investigation of those connections lies
outside the aim of this book, it is important to note the
fundamental role of processed instructions in producing rhythms in
time and space.
Process and the appearance of motion are essential to
10 PRINT. The still images that show a moment in the
program’s run, the sort that are reproduced in
this book, document the program to some extent but are an
incomplete representation. A full understanding of the program
comes only through experiencing the pattern building one unit at a
time and the surprise of the unexpected sequences and connections
that form into a maze as the left or right line is randomly
drawn.
The visual arts at their most traditional, represented by frescoes,
stone and bronze sculptures, and canvases, are static. A viewer
creates motion by moving around a work, eyes exploring the surface,
but the object is still. The thrust of machines into life at the
beginning of the twentieth century was an inspiration to painters
(the Futurists), photographers (Étienne-Jules Marey,
Eadweard Muybridge), and sculptors who used motors to create
motion. The origin of integrating physical movement into artworks
in the twentieth century is often credited to Naum Gabo for
his Kinetic Construction (Standing Wave)
from 1919–1920. This sculpture created a virtual
volume in space by mechanically hitting a metal rod near the base
to send a wave through the object. Gabo was thrilled to bring
motion into his art and his enthusiasm led to
“The Realistic Manifesto,” cowritten
with his brother, Antoine Pevsner, in 1920. After rejecting the
traditional foundations of art they declared:
We renounce the thousand-year-old delusion in art that held the
static rhythms as the only elements of the plastic and pictorial
arts. We affirm in these arts a new element, the kinetic rhythms as
the basic forms of our perceptions of real time. (quoted in Brett
and Nash 2000, 228)
With kinetic rhythm as the base of all new art,
Gabo’s Kinetic Construction
is an ideal demonstration. It is a machine without visual interest
or relation to the sculpture of the time. It performs the same
motion precisely over and over. The work of art is reduced to a
rhythmic repetition. While other pioneers of motion in art such as
Marcel Duchamp and Alexander Calder worked with motors to create regular machines, by the middle of the
century the dominant form of motion had shifted to the type of
chance motion experience through the wind moving a Calder or Rickey
mobile or the anarchic mechanical chaos of Jean Tingely. The
essence of 10 PRINT lies in the relationship between both forms.
The next phase of the pairing motion and repetition in visual art
brings us closer to 10 PRINT.
Artists began to create works for screens, first with film and
later for CRT screen with video. Akin to the minimalist sculptures
referenced above, there was a proliferation of minimal gestures
within experimental film and animation. Starting in the 1960s,
artists including Lillian Schwartz, John Whitney, Norman McLaren,
Bruce Nauman, Richard Serra, and Paul Sharits explored repetitive
physical movements and abstract motion with rigor.
The Flicker
(1965), a film by Tony Conrad, stands out for its clarity. As shown
earlier, without the semicolon in 10 PRINT,
each diagonal line could be seen as a panel of a film strip.
It’s only a small leap to imagine the left line
of the program as an unexposed film frame (clear) and the right
line as the maximum exposure (black) to bring the fundamental
mechanism of 10 PRINT
close to The Flicker.
The fundamental difference is the larger arc within
Conrad’s work. The pace at which the projection
flips from pure light to black is slower at the beginning and end
of the film to give it a beginning and end, while
10 PRINT maintains the same pace, does not vary in any way as it begins, and
continues running until interrupted.
Simultaneously with the exploration of repetition in film, a host
of composers based musical works on repetition. Like film and
video, musical performance is temporal, but unlike these linear
media, performances and 10 PRINT unfold in real time, each step happening in the moment and
potentially informed by the present state. Piano Phase
(1967) by Steve Reich is an iconic sound work built on repetition.
In this approximately twenty-minute-long composition, two pianists
start by playing the same twelve-note melody continuously. One
pianist plays the sequence faster so it moves out of phase until
they are back in phase, but the faster pianist is playing the
second note, while the slower is on the first note. This continues
until the faster pianist has complete a full loop and both are
again playing the same sequence at the same time. The piece
iterates further from that point, but the same phasing technique is
used until the end. The concept is the same as in
Reich’s later and simpler piece Clapping Music (1972), which is clapped by two performers and varies only in
rhythm. In 10 PRINT, new forms emerge from the program’s decision to
display the left or right line, but in Piano Phase
and Clapping Music,
new sonic forms emerge by playing the same sequence over and over,
with performers playing at a different speeds.

REPETITION IN PROCESS



The artworks in this chapter engage with regularity as a style and
technique; computers employ regularity as a necessary paradigm of
their existence. The execution of a computer program, even one that
is riddled with bugs or does numerous complex and interesting
things, is nothing if not regular. In fact, it is the regularity of
computer processes that many of the artworks discussed in the
chapter are reacting to and against. Even more than in the Ford
factory, regularity becomes a paradigm of the computational age, to
be explored and resisted because it is the central logic for even
the most basic computational literacy. While the assembly line
might put many goods in the hands of twentieth-century consumers,
families did not need to contemplate assembly lines to consume
these goods. Even for workers actually in a factory, the flow of
the factory would be defined elsewhere. However, to write even the
most rudimentary program, a person must understand and engage the
regularity of the machine. Consequently, it is worthwhile to
articulate the process of flow and control that allows this
regularity to become such a generative space.
Part of what gives programs their power is that they can be made
even more regular by repeating a sequence of instructions. This
repetition can be accomplished in two main ways: in a loop that
continues for a certain number of iterations or in an unbounded
loop. These two loops correspond to two types of branching, the
conditional and unconditional branch. To understand the unbounded
loop of 10 PRINT and the specific legacy of GOTO
is to understand the essentials of the flow of control in computer
programs.
To explain the loop, it is necessary to first juxtapose it with the
alternative: not having a loop and letting a program progress in
the usual sequence. In any imperative programming language,
commands are processed in a particular order that relates to the
left-to-right then top-to-bottom path that Western
readers’ eyes take along a page. If one types
two PRINT commands directly into the Commodore 64’s BASIC
interpreter, with a colon between them, like so:
PRINT "FIRST": PRINT "SECOND"
the result is
FIRST
SECOND
The command on the left is executed first, then, the command on the
right. In executing the following program, the top-most, left-most
command is run first, then the one to the right, and then the one
on the next line, so that
10 PRINT "FIRST": PRINT "SECOND"
20 PRINT "THIRD"
prints FIRST, SECOND, and THIRD, in that order. Since BASIC uses
line numbers to determine the sequence, the order in which these
two lines are typed is completely irrelevant to how the program
runs.
There are some important ways to complicate this straightforward
program flow. All of these ways involve branching, which causes
program flow to shift to some other command rather than continuing
along to the subsequent one. The same could be said of the low
level of machine code and its execution by the processor. A machine
language program is a sequence of numbers typically processed in
order of appearance. An executing machine language program,
however, like a high-level program in BASIC or another imperative
language, can either continue to process the next instruction or
can move out of sequence to process a different instruction. The
standard case is when a processor continues to the next machine
language instruction, just as the reader of a text moves to the
next word or line. This involves incrementing the program counter
so that it points to the place where the next instruction is
located in memory. If the current instruction is one that can
change the flow of control, however, the program may jump to a new
memory location and a new piece of code. The branch or jump is the
key operation that is used to build a loop.
Conditional and Unconditional Branching



There are two essential ways that the flow of control can change
and a program can branch, continuing from a new point. An
unconditional branch always directs the program to jump to a new
location, like the instruction “Go directly to
Jail. Do not pass Go” in Monopoly. The assembly
mnemonic for an unconditional branch is jmp;
the corresponding BASIC keyword is GOTO;
packaging together a branch away from a line of code and then a
subsequent branch that returns to the original line constitutes a
subroutine, implemented in BASIC using GOSUB
and RETURN. When an unconditional branch is used to point back to an earlier
instruction, it can cause repetition in process as in the case
of 10 PRINT.
The other type of branch is a conditional branch, a type of
instruction that is critical to general-purpose computing. There
are many different types of conditional branches in assembly, since
there are many different types of conditions. beqis
“branch if equal,” for instance: when used after a comparison (cmp),
the branch will be taken only if the compared values are
equal. bmi, “branch if minus,” checks to see if
the last computation resulted in a negative value. In BASIC, using
the IF…THEN statement is the most straightforward way to accomplish a
conditional branch, as this program demonstrates:
10 INPUT A$
20 IF A$ = "1" THEN PRINT "YOU TYPED ONE!" : END
30 PRINT "SOMETHING ELSE..."
If, after running this program, the user types just the digit
“1” and then presses RETURN, all of the statements on line 20 will be executed. “YOU
TYPED ONE!” will be printed and then the program will
terminate as END instructs. This is another way to change the flow of the program,
of course: use ENDor STOP to terminate the program. If STOP is
used, the CONTINUE command can be issued to pick up where the program left
off.
If the user types nothing or anything other than a single
“1” before pressing RETURN, the flow of control moves to line 30; both the first PRINT
statement and the END are skipped. “SOMETHING ELSE . . .”
is printed instead. This program, although written differently, does exactly the same
thing:
10 INPUT A$
20 IF A$ = "1" THEN GOTO 40
30 PRINT "SOMETHING ELSE..." : END
40 PRINT "YOU TYPED ONE!"
Instead of using the IF . . . THEN to directly determine whether two statements (the
PRINT and END statements) should be executed, this one changes the flow of
control with GOTO. The GOTOstatement is used to skip ahead past PRINT “SOMETHING ELSE…” and
END to line 40. Although this isn’t a very exciting
program, it shows that unconditional branching can be used to jump ahead
in the sequence of lines; there is nothing about GOTO that means it must
be used to repeat or loop.
Although there is no IF . . . THEN
statement in 10 PRINT, and the program does not by any interpretation contain a
conditional branch, this short program does accomplish a very
small-scale sort of variation. By computing 205.5+RND(1)
and passing that value to the function CHR$,
the program prints either PETSCII character 205 or PETSCII
character 206. This variation between two characters is a one-bit
variation, a selection from the smallest possible set of options.
Yet, in combination with the regularity of a repeating processes
and the regularity of the Commodore 64’s screen
grid, these selections take shape as something evocative and
visually interesting.

The harmfulness of GOTO



Those aware of the discourse in computer science might turn
to 10 PRINT with some trepidation, thanks to a 1968 letter to the editor from
famous computer scientist Edsger W. Dijkstra, one that was
headlined “Go To Statement Considered
Harmful” (EWD 215). Although the title was actually
written by the editor — Dijkstra called this
article “A Case against the GO TO
Statement” — the letter and the
sentiment behind it have gained lasting fame. One author called it
“probably the most often cited document about
any type of programming” (Tribble 2005). As this author
explains, Dijkstra’s exhortation was written at
a time when the accepted way of programming was to code iterative
loops, if-thens, and other control structures by hand using goto
statements. Most programming languages of the time did not support
the basic control flow statements that we take for granted
today, or only provided very limited forms of them. Dijkstra did not mean
that all  uses of goto were bad, but rather that superior
control structures should exist and should replace most uses of
goto popular at the time.
Indeed, there is an obvious control structure, unfortunately absent
from BASIC, which would accomplish the purpose of
10 PRINT’s GOTO without requiring the use of GOTO.
This is the while or do . . . while
loop, which in this case could simply be used with a condition that
is always true so that the loop would always repeat. For instance,
if Commodore 64 BASIC had a DO…WHILE
statement and a keyword TRUE,
one could write:
10 DO : PRINT CHR$(205.5+RND(1)); : WHILE TRUE
This would certainly be a clearer way to write the
program, and it would be widely recognized today as clearer because
Dijkstra’s view of programming has prevailed.
When the creators of BASIC introduced True BASIC in 1983 they
included the DO loop; its syntax was a bit different from the preceding, but the
essential construct was the same.
Although this important construct is missing from early versions of
BASIC, it’s not obvious that the tiny program 10 PRINT
would have particularly offended Dijkstra. In his letter, he
objects to the “unbridled use of the go to statement,”
but he does not state that every use of it is unambiguously bad. He describes the
GOTO-related problems that arise when programmers are not able to track and
understand the values of variables. But 10 PRINT
has no variables, so this particular problem with
GOTO is not an issue in this particular case.
As mentioned, GOTO has a assembly language equivalent, jmp.
Dijkstra essentially exempted assembly language from his critique
of GOTO. He recognized that computer programs written in a high-level
language are more complicated and nuanced ways of expressing thought, not tied directly to
machine function. By creating a new sort of language that does not
directly mimic the operation of the processor, it is possible for
programmers to think more flexibly and powerfully. Although
Dijkstra objected to the way BASIC was designed, he, like the
original designers of BASIC, worked strenuously to describe how
high-level languages, useful for thinking about computation, could
work in machine-independent ways.

Bounded and Unbounded Loops



10 PRINT works as it does because of its repetition of the
PRINT statement, repetition that is unconditional: it will continue until
something outside the program interrupts it, such as the user
pressing the key labeled RUN STOP or unplugging the computer. This
ability to repeat endlessly differentiates the program from its
artistic parallels in other media.
At a high level, programs can contain two types of loops: bounded
(also called “finite”) and unbounded (or “infinite”). 10 PRINT has
the latter kind. If one is writing a program that is intended to
produce some result and exit, it would be a mistake to include an
unbounded loop, creating a bug that would make the program hang on
a particular set of operations. Even among comparisons to
repetitions in fine art and craft work, the computer stands alone
as a system capable of infinite looping. Nonetheless, the unbounded
loop does have legitimate uses. It can be used to keep an
application, usually an interactive one, running and possibly
accepting input until the system is shut off, rebooted, or
interrupted. This can be done, and is done, even on a Commodore
64.
Bounded loops are those that end under certain conditions. The
exact conditions vary; some will continue until the program reaches
a predefined exit state, while others execute a specific number of
times. If there are exit conditions for a loop at all, that
suggests the programmer expected some kind of change to be
introduced as the program executes.
A common use of finite loops is to create an iterative process.
Iteration is a special type of looping where the result of one pass
through the loop influences the result of succeeding passes. The
simplest example of an iterative process is nothing more than
counting: beginning with an initial value of 1, adding 1 to this
(that is, incrementing it) to produce 2, performing the same
incrementing operation again to yield 3, and so on. If the program
goes to some limit, say 10, the loop is bounded:
10 A=1
20 PRINT A
30 A=A+1
40 IF A<=10 GOTO 20
If line 40 is replaced with 40 GOTO 20,
the loop becomes unbounded. A conditional branch is what makes loop bounded — it
ends when the condition is met. Therefore, an unconditional branch
to earlier in the program corresponds to an unbounded
loop.


BASIC CONSIDERED HARMFUL
Edsger W. Dijkstra, of “Go To Statement
Considered Harmful,” was not at all a fan of the BASIC
programming language in which 10 PRINTis
written. He wrote in a 1975 letter, “How do we
tell truths that might hurt?,” published in 1982:
“It is practically impossible to teach good
programming to students that have had a prior exposure to BASIC: as
potential programmers they are mentally mutilated beyond hope of
regeneration” (EWD 498).
The statement appears amid other one-sentence jabs at programming
languages (FORTRAN, PL/I, COBOL, and APL), IBM, and projects to
allow “natural language” programming. In a 1984 keynote address, “The
Threats to Computing Science,” Dijkstra said,
similarly, that “the teaching of BASIC should be
rated as a criminal offence: it mutilates the mind beyond
recovery” (EWD 898). In both cases, his statements are
not part of arguments, nor are they elaborated at all. They are
simple denunciations of BASIC — no doubt resonant
with many computer scientists and no doubt of some tactical value
at the time, when the structured programming that predominates
today and that Dijkstra was advocating was still being
questioned.
Dijkstra’s papers contain a single reference to
BASIC coinventor John Kemeny. Dijkstra read
Kemeny’s 1983 article in Daedalus,
an article that discussed the idea of computer literacy and
declared that “the development of
‘structured languages’ in
recent years has been a giant step forward.” Dijkstra
simply wrote a dismissive sentence about the article, saying it “gave a
striking example of superficiality” by comparing
computer languages to natural languages (EWD 858).
The context for these statements was a time of formation and
fortification of the discipline of computer science. Also important
was that at this time, computer scientists were undertaking the
development and use of languages that might support first formal
verification (the provability of programs) and later the weaker,
but still potentially very useful, technique of program derivation
(Tribble 2005). BASIC, created for quick interactive use and very
amenable to creative production, was not a suitable language for
Dijkstra’s goals.
Much of Dijkstra’s influential thinking (about
stepwise programming, for instance) applies most clearly to
programs of some complexity. It would be difficult to develop a
program as simple as 10 PRINT
using stepwise programming, since it may take about one step to
write it. As mentioned, 10 PRINT
is in a sense exempt from Dijkstra’s critique
of GOTO because of its lack of variables. But in another sense, it is one of many
extremely simplified programs that could lead programmers to learn
programming methods that don’t scale. The risk
of learning programming via one-liners is that one learns tricks
and particular methods instead of gaining an understanding of
programming methodologies.



The bounded loop, and counting up or down to a particular value, is
so important in programming that BASIC has its own special syntax
for specifying that sort of loop, using the FOR…TO
and NEXT statements. The bounded program above could also be
written:
10 FOR A=1 TO 10
20 PRINT A
30 NEXT
The same program could be written in yet another way:
10 A=1
20 PRINT A
30 A=A+1
40 PRINT A
50 A=A+1
...
200 PRINT A
Doing so is an inefficient and error-prone way to write a process.
The programmer is forced to do a repetitive task that the computer
is extremely well suited to accomplish on its own. Modifying the program to
count to 50 takes four times as long as writing the original
program, if this way is chosen. In the previous program, one simply
changes “10” to “50” in line 10.

Looping and Iterating



10 PRINT’s unbounded loop produces iterative effects, even if it is not
enacting a purely iterative process. The unconditional branch at
the end is what accomplishes this: 10 PRINT
clearly repeats. There is nothing in the code, however, to indicate
that 10 PRINT is an example of iteration in the more mathematical or
computational sense. There are no variables that change value from
one pass to the next — there are no variables at
all, in fact — and the code inside the loop, and
the way that code works, never changes. In the most straightforward
computing sense, the BASIC program 10 PRINT CHR$(205.5+RND(1)); : GOTO 10
does not iterate.
Nonetheless, watching the program execute on screen shows hints
that there is something changing as it runs: the position where a
new character is displayed changes every time the loop executes,
moving one location to the right until it reaches the fortieth
column; then, the display of characters continues on the next line
in column 1. The entire contents of the screen also moves up by two
lines, with the top two lines disappearing, once the display of
characters reaches the bottom left position.
None of this is a direct result of any BASIC statements included
in 10 PRINT. Displaying strings on the screen generally has this effect, since
BASIC’s PRINT command calls the Commodore 64 KERNAL’s CHROUT routine to produce output. So,
while 10 PRINT is not an iterative program, it invokes the iterative behavior
of PRINT. 10 PRINT exposes the power of using simple, iterative steps to create a
complex construction.
Computing is full of iterations and simple loops. The highest level
of an application program is typically the “main
loop” that checks for user input and for other events.
Turn-based games, such as a chess program that plays against a
human player, will typically have a conditional loop for each turn,
conditioned upon whether or not the game is over. And frames of a
graphics window or the screen overall, whether drawn in OpenGL,
Processing, or by some other means, are drawn within a loop that
repeats more or less rapidly depending upon the
framework.


PERFORMINg ThE LOOP



Step Piece by Vito Acconci is a performance work based on repetition that is
interesting to compare and contrast with 10 PRINT;
it is a defined, repetitive procedure that is carried out by a
person rather than a computer. Acconci defined this work in a brief
text: “An 18-inch stool is set up in my
apartment and used as a step. Each morning, during the designated
months, I step up and down the stool at the rate of 30 steps a
minute; each morning, the activity lasts as long as I can perform
it without stopping.”
Since there are months designated for the performance, Acconci
defined a bounded loop. Step Piece was certainly meant to be the same every morning in particular ways
during these months. But it was not the same at every point for a
viewer or for Acconci, and will not be the same at every point for
someone considering the piece years later. How is repeating the
same thing over and over not repetitive? A
person’s repetitive performance cannot be
exactly the same each time. Acconci no doubt stepped more rapidly
at some times and then needed to slow down; his foot struck the
stool in a slightly different way, producing a different sound.
There is no close analogue to this in 10 PRINT,
since a Commodore 64 runs the program the same way each time and
the symbols are presented in the same way on the same
well-functioning television. The photographic documentation
of Step Piece shows Acconci in action with one foot on the stool and the other on
the way up or down. Just as different screen captures from
10 PRINT are different, each photo is different — they differ
even more in some large-scale ways since they are images of the
same person in different postures, not a 40 × 25 grid
with different elements in it.
Additionally, as the days pass, Acconci gets better at his
repetitions (like a weightlifter doing “reps” to improve strength)
while 10 PRINT writes characters to the screen at the same rhythm and in the same
manner as long as the program runs. Some computer programs do
actually improve over time — for example, because
they cache frequent operations or use machine learning to classify
inputs better. A one-line program like 10 PRINT,
however, is an exemplar of the legacy of computers as basic
calculating machines that do the same thing with symbols each time
they are run. Finally, the repetition does not have the same effect
on the viewer because the context of life changes from day to day.
Thus, repetitive motion may elicit different thoughts at different
times.


FOR . . . TO . . . STEP
The FOR loop in BASIC is a bit more general than is shown in the example on
page 96. It can be used not only to increment a variable, but also to change
its value each time by any amount. A different increment is set
using the STEP keyword. To show only the even numbers between 2 and 10:
10 FOR A=2 TO 10 STEP 2
20 PRINT A
30 NEXT
If STEP is omitted, it’s the same as adding
STEP 1. The step value can be set to a negative number or even to zero. By
setting the value to 0, an unbounded FOR loop
can be created:
10 FOR A=1 TO 10 STEP 0
20 PRINT "FOREVER!"
30 NEXT
This allows for an alternate version of 10 PRINT that uses a FOR
loop instead of GOTO:
10 FOR A=1 TO 2 STEP 0 : PRINT CHR$(205.5+RND(1)); : NEXT
This one is slightly longer and exceeds the forty characters of a
physical line but still a “one-liner” in the sense that it
fits into the eighty-character logical line.
In this version, the “10” at the beginning is optional. The three statements can be entered together
in immediate mode, just as one can type PRINT"HELLO" and have the PRINT
statement executed immediately:
FOR A=1 TO 2 STEP 0 : PRINT CHR$(205.5+RND(1)); : NEXT
The only reason the line number is needed in the original program
is as a point to branch back to. As GOTO
goes, so goes the line number.



So, these are at least four ways that Step Piece
changes through its repetition: (1) human performance changes in
subtle ways from repetition to repetition; (2) documentation shows
different, nonrepetitive moments; (3) human performance improves over time; and (4) the work is perceived
in different contexts, even by the same viewer. Step Piece
is exemplary here because it seems to be the more or less pure
repetition of pure repetition, but actors putting on the same play
on different nights encounter a similar type of nonrepeating
repetition and all of these four points also apply to the case of
plays that run for several performances. Even though
10 PRINT is a performance by a digital machine, (2) and (4) still apply, so
that its repetition also varies in these ways.
The performance piece Dance,
a collaboration between choreographer Lucinda Childs, composer
Phillip Glass, and artist Sol LeWitt, interweaves these performance
strands together. Like all of the works already discussed,
narrative is absent and the subject is literally movement, hearing,
and seeing through variation and repetition (figure 30.10). For
three of the five sections of the performance, LeWitt created films
of the dancers performing the same sequence of motions that they
perform live on stage. He filmed them on top of a grid to reinforce
the structure within the choreography. The film is projected onto a
scrim at the front of the stage during the performance, and it is
synchronized to a recorded version of Glass’s
score. At times the projected image is enlarged and at times it is
slowed down as the film echoes the movements of the live
performance. Glass’s music for Dance
features his signature style of repeating and transforming brief
passages. The foundation of Dance
is Lucinda Childs’s choreography, which she has
referred to as stripped-down ballet. In the first and strongest
movement, the dancers move along straight lines from left to right
and right to left across the stage. As they quickly follow the line
in a mix of running, skipping, and turning, they move through a
series of tilts. The perception is they are moving through every
permutation within the grammar of movements created for the dance.
As with 10 PRINT, the sound and motion are hypnotic and emphasize the details of the
variation rather than larger global structural changes.
Dance, however, is unlike 10 PRINT
in that it works across multiple media to synthesize a powerful and
at times overwhelming aesthetic experience.
Regularity is an important technique of the mid-to-late twentieth
century in part because artists explored systematic production and
repeated processes as epitomized by computer programs. The impact of those
art forms is in the stripping away of their representational and
expressive possibilities, the minimalism in their constructivist
techniques. By contrast, 10 PRINT, as an initial and initiating example for novices at the Commodore
64, does not strip away but offers an introductory glimpse of the
effects of the flow and control of computer systems processing an
unbounded loop within the constraints of regulated time and space.
If the art world was moving away from representation and expression
to this minimalism, the novice programmer was encountering
10 PRINT as the beginning of a movement toward representation and
expression, in this case within the world of computer
graphics.
[image: Image from the 2009 revival of Dance, a 1979 collaboration of Lucinda Childs, Phillip Glass, and Sol Lewitt. Photo by Sally Cohn, ©2009. Courtesy of Sally Cohn.]

Figure 25-10. Image from the 2009 revival of Dance, a 1979 collaboration of Lucinda Childs, Phillip Glass, and Sol Lewitt. Photo by Sally Cohn, ©2009. Courtesy of Sally Cohn.

In the cases discussed, regularity in time, space, and process
becomes programmatic, a proportional regulator that proves to be a
generative constraint, producing larger patterns that can be quite
unexpected. Through the unrelenting predictability of regularity,
the repeated random presentation of two diagonal lines across a
grid becomes a quite unanticipated scroll of mazes. As a
pedagogical example in the technē of programming, 10 PRINT
is both a product of and a demonstration of the force of
computational regularity.

30. REM VARIATIONS IN PROCESSING



Building a high-resolution, interactive program that is inspired
by 10 PRINT allows visual design variations that might not be easy or even
possible within a Commodore 64 program. Computational visual art
has been created on a variety of platforms and in many systems and
languages over the last fifty years, but the last decade has seen
an explosion in the use of commercial tools for designers with
embedded programming languages (most notably, Adobe Flash) along
with programming environments designed by visual artists. John
Maeda’s Design by Numbers system from 2001
offers one example of the latter; a far more influential tool is
Ben Fry and Casey Reas’s Processing, itself
inspired by Maeda’s work and started within his research
group at the MIT Media Lab.
While a simple BASIC program writes some text to the screen
with 10 PRINT "HELLO WORLD",
a simple Processing program draws a square to the screen
with rect(20,30,80,60);. This one-line Processing program draws the rectangle with its
upper-left corner at coordinate (20, 30) and with a width of 80
pixels and height of 60 pixels. Essentially, Processing is an
image-making programming language that builds on knowledge of
geometry, photography, typography, animation, and interaction.
Under the hood, Processing is based on Java with a specialized
toolkit, program framework, and authoring environment, all suited
to the development of interactive visual sketches. Because
Processing is situated between programming and the visual arts, it
serves as a bridge between two professional cultures. Those who
approach Processing with a programming background are encouraged to
learn more about making sophisticated visual images. From the other
side, visual artists learn the fundamentals of procedural
literacy.
The algorithm underlying 10 PRINT is of course not specific to the Commodore 64; it can be executed
with a sheet of graph paper, a pen, and a coin to toss. The act of
running the algorithm on a number of different platforms reveals what is essential to the
algorithm, on the one hand, and to the specific constraints and
affordances of the system on the other: lines produced by
PRINT wrap and scroll automatically, for instance, so characters can
accumulate and fill the screen without being addressed by x and y
coordinates. More subtle defaults of the Commodore 64 include the
color (light blue on blue) and the speed at which each new section
of the maze is added. When 10 PRINT is ported to another platform, certain features of the Commodore 64
must be defined consciously or at least approximated within the new platform; the programmer can
renegotiate the precise color, resolution, and speed of the maze.
While many elements and aspects of the original program can be
modified in BASIC on the Commodore 64, some are more firmly fixed.
Primarily, the 40 × 25 character screen that defines
the resolution of the grid is fundamental to the
computer’s video system and defines the number
of units that make up the maze.
The first Processing port of 10 PRINT was written to take advantage
of the increased resolution of contemporary screens. It does this
by making the thickness and ends of the lines into variables that
can be changed while the program runs. The lines of the maze can
range in width from 0.5 to 10 pixels, and the lines can terminate
with a rounded or square end. Like 10 PRINT,
this Processing port maintains the grid of lines at 40
× 25 units, but, unlike 10 PRINT,
it doesn’t add each grid unit in sequence from
left to right and top to bottom. In the new high-resolution
version, the entire maze is refreshed at once. Using the default
Processing colors to create white lines and a black background
confers a mood similar to that of the original lower-contrast blues
of the Commodore 64 (see figure 35.1).
While creating these variations, some additional quick changes were
introduced to explore the visual aspects of the 10 PRINT
maze. First, the 50–50 chance to draw a left or
right line was altered so it could be re-weighted while the program
runs to increase the chance of drawing one line instead of the
other. The result is shown in figure 35.2. Then, graphic symbols
different from the original diagonal lines were used to expose part
of the program’s structure.
The optical effect of the maze is created as these diagonals align
themselves to produce walls and paths. The
viewer’s eyes dance across the image as they
attempt to find their way through the structure. Some symbols also
create a strong, but different optical effect, while other symbols
generate a boring, flat graphic. Figure 35.3 shows the result of
using a blank image (space) and circle in place of the diagonals.
This exploration into applying a different visual skin to the
fundamental coin-toss structure of the 10 PRINT program
reveals that the appeal of 10 PRINT derives
from the random choice among two or more elements, the precise
selection of which optically activates the viewer to create an
interesting and culturally relevant image — in
this case, the maze.
[image: Processing ports of 10 PRINT that explore the effects of changing the line weights and endings.]

Figure 30-1. Processing ports of 10 PRINT that explore the effects of changing the line weights and endings.

[image: Processing ports of 10 PRINT that explore different weightings for the random values. The top image has a 25 percent chance of drawing a left-leaning diagonal line and the bottom image has a 95 percent chance.]

Figure 30-2. Processing ports of 10 PRINT that explore different weightings for the random values. The top image has a 25 percent chance of drawing a left-leaning diagonal line and the bottom image has a 95 percent chance.

[image: Processing port of 10 PRINT that replaces the lines with circles and blank spaces.]

Figure 30-3. Processing port of 10 PRINT that replaces the lines with circles and blank spaces.

Processing port of 10 PRINT focused on closely imitating the behavior of the. Commodore 64.
[image: ]
The changes just discussed can be explored directly on the
Commodore 64, some more easily and some less so, as has been shown to
some extent in the remark Variations in BASIC. It is convenient to
explore these changes in Processing, however. For one thing,
Processing exposes many dimensions of variation, down to the pixel
level, which would be difficult to change on the original platform.
For another, a programmer who is highly fluent in Processing can
work through ideas and problems easily using that
system.
Some variations that are most easily accomplished on the Commodore
64 are the ones involving reweighting the distribution of lines and
replacing the lines with spaces and circles. As discussed
earlier, 10 PRINT’s distribution of ∕ and ∖ can be altered by simply changing the
“.5” in “205.5,” for instance:
10 PRINT CHR$(205.25+RND(1)); : GOTO 10
The 10 PRINT variation to show spaces and circles instead of diagonal lines also changes
the selection of value 205 or 206 to choose between the numerical code of the space character, 32, and that for a circle character,
113:
10 PRINT CHR$(32+(INT(RND(1)+.5)*81)); : GOTO 10
Writing and running this first Processing port, which focuses
entirely on the image of the maze and on allowing runtime changes
in parameters, points out an important visual aspect of the
original 10 PRINT: watching the maze building up or accumulating one unit at a time on
the Commodore 64 is a major component of the experience. This
behavior doesn’t naturally take place with Processing because the entire screen updates at once, not character
by character. Processing makes more extensive use of the computer’s double-buffered graphics system. This
allows graphics to be drawn to an off-screen image buffer, stored
in RAM, and, once completed, pushed across to the computer screen.
For programs that feature animation or interaction, and thanks to
today’s much faster hardware, the result is a
new image written and drawn to the screen about sixty times per
second.
The lines of Processing programs do not begin with numbers, as they
do in Commodore 64 BASIC. Each line is executed in order from top
to bottom and according to some higher-level rules. This can be
seen in the following Processing port of 10 PRINT.
This program does not allow the
user to interactively vary parameters, but it does reproduce the
character-at-a-time construction of the original:
int w = 16;
int h = 16;
int index = 0;

void setup() { size(640, 384);
  background(#0000ff);
  strokeWeight(3);
  stroke(224);
  smooth();
}

void draw() {
  int x1 = w*index;
  int x2 = x1 + w;
  int y1 = h*23;
  int y2 = h*24;

  if (random(2) < 1) {
    line(x2, y1, x1, y2);
  } else {
    line(x1, y1, x2, y2);
  }

  index++;
  if (index == width/w) {
    PImage p = get(0, h, width, h*23);
    background(#0000ff);
    set(0, 0, p);
    index = 0;
  }
}
The primary structure of the program is defined by the
setup() and draw() blocks. Variables may be defined outside of these blocks, but
everything else is sequenced through them. When the program starts,
the variables outside of the blocks are declared and assigned.
Next, the lines of code inside of setup() are read from top to bottom. Here, the size of the display window
is set to be 640 pixels wide and 384 pixels high, and the colors
for the background and lines are defined. Next, the code
inside draw() runs from top to bottom. Whatever code is inside the
draw() block runs, from top to bottom, once for each frame until the
program is terminated. The code within the if
statement, inside draw(), samples a random value and then draws one of the two possible
lines. The code in the if block at the bottom of draw()
moves the maze up when the maze line that is currently drawing is
filled. This code behaves and looks more similar to the canonical
Commodore 64 10 PRINT (see figure 35.4), but the process is defined differently.
There is a way within Processing to make a 10 PRINT
port that is in some ways a better approximation of the program on
the Commodore 64. This method uses the text console of the
Processing Development Environment (PDE) instead of the pixels in
the display window; this console is typically used for error
messages and writing debug statements through the
print() and println() functions, which are similar to PRINT
in BASIC. The console, however, can only print text; programs
themselves are not typed in this area, and graphics cannot be drawn
there. The other significant difference is that the graphic
characters of PETSCII are not available in the native console font
for the PDE. As a result the “/” and “\” (slash and backslash) characters
need to be used in place of diagonal graphics ∕ and ∖.
This results in space between the lines which prevents the illusion
of a continuous maze. The output is similar to that of the
first 10 PRINT port in Perl, shown in figure 25.3. A Processing program that
produces this approximation of 10 PRINT
can also be realized in one line:
void draw() { print((random(1)<0.5) ?'/' :'\\'); }
When the program is run in Processing, an empty display window
opens and the text is printed to the console as seen in figure
35.5. This exploration raises a crucial difference between writing
this program in Commodore 64 BASIC and writing it in Processing.
The one-line Processing program is quite similar as code but produces a divergent result, one that
looks a great deal like that of the first Perl one-liner and the
Apple II one-liner discussed in the previous remark.
[image: This one-line Processing 10 PRINT port is algorithmically more similar to the Commodore 64 program, but the visual output is extremely different. The code is written in the text editor and the output is drawn to the console rather than opening a new display window.]

Figure 30-4. This one-line Processing 10 PRINT port is algorithmically more similar to the Commodore 64 program, but the visual output is extremely different. The code is written in the text editor and the output is drawn to the console rather than opening a new display window.

Evaluating the similarities and differences between the Commodore
64 10 PRINT program and the Processing port shows that the shape of the small component
lines, and specifically the shape of their ends, is a subtle but
crucial factor. In the Commodore 64 10 PRINT
image, each single-character diagonal line comes to a point on both
ends. This is a result of the characters being 8 × 8
pixel tiles with thick lines that run all the way to the corners.
This maze is created by tiling these 64-pixel squares.
In the Processing program, each added line is free to extend beyond
any particular box within the window. A Processing window is a
continuous surface of pixels, each of which can be addressed
precisely with an x- and y-coordinate. The 10 PRINT
program comprises 320 × 200 pixels, but the
controllable resolution is 40 × 25, for a total of
1000 elements. A Processing version of the program can utilize all
of the pixels in a window — and in a
screen-filling window on a large, contemporary display, this can
mean millions of pixels. A 1080p high-definition display, for
example, is composed of 2,073,600 pixels.
With this enhanced resolution in mind, a third version of
10 PRINT in Processing follows — one that takes more
liberties with the original program. The number of rows and columns
in the grid is variable, the direction of the line defines its
color (black or white), each line is defined as a quadrilateral to
give the shape more flexibility, and a third color is used for the
background. Each time the code is run, the size of the grid unit is
defined at random as a power of 2 (2, 4, 8, 16, or 32), and the
thickness of the lines is set randomly to
2, 4, or 8. Figure 35.6 shows some of the varied results. With the
ability to further define the graphics, the code becomes longer
than a one-liner, but still fairly compact.
The decision to display one direction of lines as white and the
other as black triggers the viewer’s evolved
perception to create depth within this two-dimensional image. The
ordinary process of visual perception indicates that there is a
light source that is reflecting off one directional edge and
creating a shadow on the other. The angle at which the lines
terminate in this program enhances the effect by occlusion and
termination at the edge. This creates an isometric perspective that
further enhances the perceived dimensionality. These effects work
well in some randomly determined configurations and are subverted by others (figure 35.6). This is
accomplished with the following program:
[image: Processing port of 10 PRINT that adds a new line shape, colors, and variation of grid units.]

Figure 30-5. Processing port of 10 PRINT that adds a new line shape, colors, and variation of grid units.

Processing program based on 10 PRINT, but significantly different, in which each. line has a random thickness.
[image: ]
size(1020, 680);
noStroke();
background(0, 0, 255);
int rows = int(pow(2, int(random(1, 6))));
int u = height / (rows + 4);
int thickness = int(pow(2, int(random(1, 4))));
int uth1 = u / thickness;
int uth2 = u + uth1;
int startX = int(-u * 0.75);
int startY = height/2 - rows/2 * u;
int endX = width+u;
int endY = height/2 + rows/2 * u;
for (int x = startX; x < endX; x += u) {
  for (int y = startY; y < endY; y += u) {
    if (random(1) > 0.5) {
      fill(255);
      quad(x, y, x+u, y+u, x+uth2, y+u, x+uth1, y);
    }
    else {
      fill(0);
      quad(x, y+u, x+u, y, x+uth2, y, x+uth1, y+u);
    }
  }
}
It is worth noting that, despite all of the random options in the
newly defined program, the line weight remains constant throughout.
To check the visual effect of selecting a random line weight, one
can simply move lines 6–8 of the program
(declaring and defining thickness,
uth1, and uth2) right underneath the second line beginning with for,
so they are within that for loop. The results are shown in figure 35.7. At this
stage, the program distinguishes itself significantly from its parent and
emerges as a qualitatively unique algorithm.
35. RANDOMNESS



An essential element of 10 PRINT is randomness; the program could not produce its mesmerizing visual
effect without it. This randomness comes by way of RND, a standard function in BASIC. RND has
been part of the BASIC lexicon since the language’s early days at Dartmouth. What the
function does is easily characterized, yet behind those three letters lie decades, even centuries, of a history bound up in
mathematics, art, and less abstract realms of culture. This chapter
explores randomness in computing and beyond. The role of randomness
in games, literature, and the arts is considered, as are the
origins of random number generation in modern mathematics,
engineering, and computer science. Also discussed is the
significance of “pseudorandomness” — the
production of random-like values that may appear at first to be
some sad, failed attempt at randomness, but which is useful and
even desirable in many cases. The chapter argues that the maze
pattern of 10 PRINT is entwined with a complex history of aesthetic and utilitarian
coin flips and other calculations of chance.
Since a random occurrence is “hap,” the root of happy, it might seem that
“random” would have a happy etymology. But this is not so. In centuries past, before the
philosophers and mathematicians in the Age of Enlightenment sought
to rationalize chance, randomness was a nightmare. Likely ancestors
of the word “random” are found in Anglo-Norman, Old French, and Middle French and include
randoun, raundun, raundoun, randon, randun, and rendon — words
signifying speed, impulsiveness, and violence. These early forms
are found beginning around the twelfth century and probably derive
from randir, to run fast or gallop (“random, n., adv., and
adj.” 2011). Bumper stickers implore drivers to
“practice random acts of kindness,” but only because people in our culture fear random acts of violence
so much that this phrase has become ingrained and can be punned
upon — and at a deeper level, perhaps, because the
speed and violence of other vehicles are to be feared. While in
recent days it might be harmless to encounter “a
random” sitting in the computer lab exploring a system
at random, a “random encounter”
centuries ago was more likely to resemble a random encounter
in Dungeons & Dragons:
a figure hurtling on horseback through a village, delivering death
and destruction.
Only recently have the meanings of the word
“random” coalesced around science
and statistics. The history of this word is strewn with obsolete
meanings: the degree of elevation of a gun that maximizes its
range; the direction of a metallic vein in a mine; the sloping
board on the top of a compositor’s frame where newly arranged
pages are stored before printing. These particular randoms kill
opponents, create wealth, or help assemble texts. The
RND command in 10 PRINT selects one of two graphical characters — a kind of
textual composition that recalls the last of these meanings of
random. 10 PRINT’s random is a flip or flop, a symbol like a slash forward or backward
(but fortunately less fearsome than the
horseman’s random slash). The program splays
each random figure across the screen using the PRINT
command, another echo of the printing press and a legacy of the
early days of BASIC, when PRINT literally
meant putting ink on paper. Although RND
on the Commodore 64 may seem remote from these early meanings of
“random,” there are, beneath the surface, connections to speed, violence, devastation, and even
printing.
GAMES OF CHANCE



Life itself is full of randomness and the inexplicable, and it is
no small wonder that children and adults alike consciously
incorporate chance into their daily lives, as if to tame it. Games
of chance are one of the four fundamental categories of games that
all humans play, according to the French cultural historian Roger
Caillois. Whereas agon are competitive games dependent upon skill, games of
mimicry are imaginative, and ilinx are games causing disorder and loss of control, the
alea are games of chance. Craps, roulette, the
lottery — these are some of the games in this category, ones with unpredictable outcomes. Taken from the Latin
name for dice games, alea “negates work, patience, experience, and qualifications”
(Caillois 2003, 17) so that everything depends on luck. In Latin,
the āleātor is a gambler; in French, aléatoire
is the mathematical term for random.
The Appeal of the Random



In his Arcades Project
on nineteenth-century Paris, Walter Benjamin devotes an entire
section to dice games and gambling, a curious assemblage of notes
and excerpts from sources ranging from Casanova to Friedrich
Engels. “Gambling,” Anatole France
is quoted as saying, “is a hand-tohand encounter
with Fate” (Benjamin 1999, 498 [O4A]). Every spin of
the roulette wheel is an opportunity to show that fate smiles upon
the player.
Fortunes rise and fall in the blink of an eye, the roll of the die,
or the cut of the cards. Every gambler knows this, accepts it, and
even relishes it.
The allure of gambling — and more generally, the
allure of chance in all games — rests on
uncertainty. Uncertainty is so compelling that even otherwise
skill-based games usually incorporate formal elements of chance,
such as the coin toss at the beginning of a football game. As Katie
Salen and Eric Zimmerman put it, uncertainty “is
a key component of meaningful play” (2004, 174). Once
the outcome of a game is known, the game becomes meaningless.
Incorporating chance into the game helps delay the moment when the
outcome will become obvious.
Consider the case of George Hurstwood in Theodore
Dreiser’s Sister Carrie, first published
in 1900. Driven by “visions of a big stake,” Hurst-wood visits a poker room:
Hurstwood watched awhile, and then, seeing an interesting game,
joined in. As before, it went easy for awhile, he winning a few
times and cheering up, losing a few pots and growing more
interested and determined on that account. At last the fascinating
game took a strong hold on him. He enjoyed its risks and ventured
on a trifling hand to bluff the company and secure a fair stake.
(Dreiser 1981, 374)


What is intriguing about Dreiser’s account is
that it is only when Hurstwood’s good fortune
wavers that his interest in the game grows and he begins to enjoy
it. Losing a few hands makes a winning streak that much more
thrilling. “A series of lucky rolls gives me
more pleasure than a man who does not gamble can have over a period
of several years,” Edouard Gourdon avers in one
sexually charged extract in the The Arcades Project.
“These joys,” he continues,
“vivid and scorching as lightning, are too
rapid-fire to become distasteful, and too diverse to become boring.
I live a hundred lives in one” (Benjamin 1999, 498
[O4A]).
Unlike the early, purely malevolent associations of randomness
described in the beginning of this chapter, randomness here
involves the masochistic interplay between pleasure and pain. There
is also a monumental compression of time: a hundred lives in one.
Anatole France calls gambling “the art of
producing in a second the changes that Destiny ordinarily effects
only in the course of many hours or even many years”
(Benjamin 1999, 498 [O4A]). Benjamin himself declares that
“the greater the component of chance in a game, the more speedily it elapses” (512
[O12A,2]). Waiting, boredom, monotony — these
frustrations disappear as “time spills from his
[the gambler’s] every pore” (107
[D3,4]).

Forms of Randomness



Perhaps Benjamin describes games of chance with a bit more whimsy
than is useful for critical discussion of the role of randomness in
culture. Although words like randomness, chance, and uncertainty
may be casually interchanged, not all forms of chance are actually
the same. To highlight distinctions between various forms of
chance, consider the anthropologist Thomas
Malaby’s account of gambling in a small Greek
city on the island of Crete — an appropriate site
of exploration, given alea’s
Greek etymology. Malaby’s goal is to use
gambling as a “lens through which to explore how
social actors confront uncertainty in . . . key areas of their
lives” (2003, 7). How do people account for the
unaccountable? How do we deal with the unpredictable? And what are
the sources of indeterminacy in our lives?
Malaby presents a useful framework for understanding indeterminacy
based on four categories. The first category is formal indeterminacy,
or what is commonly referred to as chance. This is any form of
random allotment, which often can be understood and modeled through
statistical methods. Malaby argues that the ascendancy of
statistical thinking in the social sciences has so skewed our
conception of indeterminacy in gambling (in particular) and in our
lives (in general) that formal indeterminacy has become a stand-in
for other types of indeterminacies. The second category is
social indeterminacy, the impossibility of knowing or understanding someone
else’s point of view or intentions. A bluff is a
type of social indeterminacy. The third category is
performative indeterminacy, that is, the unreliability of one’s own or of
another’s actions, say a fumble in football game or misreading the information in plain view on a chessboard.
Finally, the fourth category Malaby describes, cosmological indeterminacy,
refers to skepticism about the fairness and legitimacy of the rules
of the game in the first place at a local, institutional, or
cosmological level. Suspicion that a game is rigged, for example,
is concern about cosmological indeterminacy (Malaby 2003,
15–17).
Privileging of the stochastic principles of formal determinacy
means that players, scholars, and even programmers dismiss social
and performative indeterminacies altogether. In the case of 10 PRINT,
thinking about social indeterminacy can reveal several new layers
of randomness, such as the idiosyncratic line numbers in the 1982
and 1984 versions of the program. Likewise, understanding
performative indeterminacies may account for the textual variants
of the program, for example, the version that appeared in the
online publication Commodore Free
that will not actually execute as printed (Lord Ronin
2008).
Cosmological indeterminacy is perhaps the most difficult form of
indeterminacy to apply to 10 PRINT. The rise of the scientific method can be seen as one enduring
struggle to impose a more rational view upon the world and to
abolish cosmological indeterminacy. From Aristotle to Galileo to
Newton, classical mechanics defined the universe as an organized
system without random actions. Einstein declared that
“God does not play dice with the universe.” Yet, as a closer examination of randomness
on the Commodore 64 will reveal, there is evidence that randomness
on this computer — and indeed, on any computer — is fundamentally
“rigged” in a way that echoes Malaby’s idea of cosmological indeterminacy.
Randomness and chance operations are so necessary to daily life,
well beyond the realm of games, that randomness itself is framed as
fixed, repeatable, and knowable.


RANDOMNESS BEFORE COMPUTING



Just as the different categories of indeterminacy in games are
often grouped together and called “chance,” so too in the visual arts,
music, and other aesthetic practices is the word
“chance” used instead of “randomness.” In his chapbook
Chance Imagery, the conceptual artist George Brecht (1966) describes two distinct
types of chance operations by which an artist might create a work:
“one where the origin of images is unknown
because it lies in deeper-than-conscious levels of the
mind” and a second “where images
derive from mechanical processes not under the
artist’s control.” The first
definition describes the work of the Surrealists and Abstract
Expressionists, who sought to allow subconscious processes to
dictate their work. The second definition is reminiscent of Dada
and closer to the typical concept of randomness in computing; it
describes the mechanical operations of the artists most directly
connected to 10 PRINT. These two senses are worth noting because it is difficult to pull on one of the two senses of
“chance” without the other one — the unconscious, in this
case — at least feeling a tug.
The tension between these two chance operations is captured in
William Burroughs’s story about a Surrealist rally in the 1920s. Tristan Tzara suggested writing a poem
“on the spot by pulling words out of a hat,” and as Burroughs tells it, “a
riot ensued” and “wrecked the theater.” In his version of events, André
Breton, the leading Surrealist, expelled Tzara from the group, his
purely mechanistic chance operation being an affront to the power
and vagaries of the Freudian unconscious (Burroughs 2003).
Bur-roughs is most certainly conflating several
events, and the break between Surrealism and Dada had as much to do
with a personality clash between Breton and Tzara as with their
approaches to art (Brandon 1999, 127). Bur-roughs himself clearly
preferred the anarchic mode of Tzara and famously described a
similarly unpredictable mode of composition, the cut-up method,
also proposed by Tzara in his 1920 “To Make a
Dadaist Poem.” Burroughs explains that
“one way to do it” is to cut a page
in four quarters and then rearrange the sections:
“you will find that it says something and
something quite definite” (90). Tzara suggests pulling
words blindly from a bag. The generative possibilities of this
cut-up technique resemble the collage in art and the montage in
film, and have become far more mainstream today than Tzara might
have imagined in 1920. For instance, Thom Yorke, the lead singer
for the band Radiohead, wrote the lyrics to “Kid
A” in 1999 by pulling fragments of text out of a top
hat.
Chance Operations



Though Yorke employed a type of cut-up method to address severe
writer’s block, artistic experimentation with
randomness in the early part of the twentieth century can be seen
as a response to the sterile functionality of rationality and
empiricism wrought by the Industrial Age and as a deliberate
reaction against World War I. Consider Marcel
Duchamp’s Three Standard Stoppages
(1913–1914). According to his description of the
piece, Duchamp dropped three meter-long pieces of string from the
height of one meter and let gravity and chance dictate the paths of
the twisting string downward. Then he adhered the twisted string
onto canvas, the shape and length of which he preserved in 1918 in
wooden cutouts, creating three new
“stoppages” that parodied the
supposed rationality of the meter. When Duchamp described his method in 1914, he observed that
the falling thread distorts “itself as it
pleases” and the final result becomes
“the meter diminished,” subverting
both the straightness and the length of what commonly goes
unquestioned (Duchamp 1975, 141–142). On his use
of randomness, Duchamp said, “Pure chance
interested me as a way of going against logical
reality” (Cabanne 1971, 46).
Duchamp, like the other Dada artists with whom he associated, saw
“logical reality” as a failure,
epitomized by the horrors of World War I. Satire, absurdity, and
the embrace of indeterminacy seemed to the Dadaists to be the most
“reasonable” response to modernity.
In the words of the Dada artist Jean (Hans) Arp,
“Dada wished to destroy the reasonable frauds of
men and recover the natural, unreasonable order. Dada wished to
replace the logical nonsense of the men of today with an illogical
nonsense.” To Arp, individual authorship was synonymous
with authoritarianism and random elements were used to liberate the
work (Motherwell 1989, 266).
The major twentieth-century composer to explore randomness was
certainly John Cage, who was strongly influenced by Duchamp. From
Cage’s point of view, random elements remove
individual bias from creation; they may be used to reach beyond the
limitations of taste and bias through “chance
operations.” Cage influenced generations of artists
through his compositions as well as through his writing, lectures,
and classes. In his text “Experimental
Music,” Cage wrote, “Those involved
with the composition of experimental music find ways and means to
remove themselves from the activities of the sounds they make. Some
employ chance
operations, derived from sources as ancient as the Chinese
Book of Changes, or as modern as the tables of random numbers used also by
physicists in research” (1966, 10).
Cage’s method of random composition was to
create a system of parameters and then leave the results to
circumstance. Cage explained, “This means that
each performance of such a piece of music is unique, as interesting
to its composer as to others listening. It is easy to see again the
parallel with nature, for even with leaves of the same tree, no two
are exactly alike” (1996, 11). Random components are
used to transform a single composition into a space of potential
compositions. Over the decades, Cage used an array of techniques to
insert unexpected elements into his compositions. He defines the
range of techniques he and his contemporaries used in the 1958
lectures “Composition as Process.”
There are generally two methods for using random values in music: to define the work at the
time of composition or to allow for variation when the work is
performed. The most obvious use of randomness in
10 PRINT is in the second category as random decisions are made during the
program’s execution — that is, while the BASIC instructions are performed by the Commodore
64.
Within two-dimensional visual art, artists also explored mechanical
random processes for reasons championed by Cage. The eminent
contemporary painter Gerhard Richter provided a simple answer to
this method’s benefits when he said,
“I’m often astonished to find
how much better chance is than I am.” There are
precedents for chance used within visual works dating back to
collage works by Arp from 1916, but the two early works most
relevant in the
discussion of 10 PRINT are the Spectrum of Colors Arranged by Chance
collage series (1951) by Ellsworth Kelly and Random Distribution of 40,000 Squares Using the Odd and EvenNumbers of a Telephone Directory
(1961) by François Morellet. These works start with an
even grid and fill the grid carefully with elements based on the
algorithms developed by the artists. Kelly uses squares of colored
paper, placed according to a system he designed. He assigned a
number to each color and plotted the numbers on the grid
systematically (Malone 2009, 133). Morellet employed a stricter
system, reading a series of numbers from the telephone book. He
made a grid of 200 vertical and horizontal lines, painting a square
blue if its assigned number is even, painting it red if it is odd.
In both of these artworks and in 10 PRINT,
the structure of the grid is what makes it possible to focus on the
variability created through the random operations.

A Million Random Digits



The need for large batches of random numbers is so acute that there
are standardized collections of them. In Deborah
Bennett’s history of humans’
quest for randomness — which she suggests goes as
far back as ancient Babylonia (1998, 17) — she
highlights one of the earliest and largest sets of random
numbers, A Million Random Digits with 100,000 Normal Deviates
(135). This series of numbers (figure 40.1) was generated in 1947
from “random frequency pulses of an electronic
roulette wheel” by the RAND Project, a research and
development think tank that would eventually become the RAND
Corporation. The 1955 publication of the series in
book form was an important contribution to any study of probability; the
book is still in use today. As the forward to the undated online
edition of the table notes:
The tables of random numbers in the book have become a standard
reference in engineering and econometrics textbooks and have been
widely used in gaming and simulations that employ Monte Carlo
trials. Still the largest known source of random digits and normal
deviates, the work is routinely used by statisticians, physicists,
polltakers, market analysts, lottery administrators, and quality
control engineers. (RAND Corporation 1955)


Considering its sophisticated origins and uses, A Million Random Digits
proposes a surprisingly unscientific method of using the book:
“In any use of the table, one should first find
a random starting position. A common procedure for doing this is to
open the book to an unselected page of the digit table and blindly
choose a five-digit number.” The RAND report goes on to
somewhat ominously explain that its one million random numbers were
originally “prepared in connection with analyses
done for the United States Air Force.” Like so many
other advances in computing, randomness, it turns out, is
intimately linked to Cold War military strategies. In fact, most of
the early work on computer-based random number generation was
performed under the auspices of the U.S. Atomic Energy Commission
see, for example, Rotenberg’s [1960] work in the
late 1950s) or the U.S military (see Green, Smith, and
Klem’s [1959] work at MIT, done with joint
support of the U.S. Army, Navy, and Air Force).


RANDOMNESS COMES TO COMPUTING



The RND command acts as the algorithmic heart of 10 PRINT,
its flip-flopping beat powering the construction of the maze. The RND
function is as fully specified as any BASIC keyword, but its output
is, by that definition, unpredictable. Mathematicians and computer
scientists don’t think in terms of predictability, though; rather, the standard mathematical treatment
of randomness defines randomness in terms of probability. A random
process generates a sequence of values selected from a set of
possible values according to a probability distribution. In the case of a discrete
distribution (heads or tails, for instance), the distribution
explains how much weight is on each possible
outcome — how likely that value is to
appear.
[image: A Million Random Digits with 100,000 Normal Deviates was published in 1955 by the RAND Corporation and was the largest list of random values yet published. It was necessary for RAND to execute their research without repeating values from previously published, smaller number tables.]

Figure 35-1. A Million Random Digits with 100,000 Normal Deviates was published in 1955 by the RAND Corporation and was the largest list of random values yet published. It was necessary for RAND to execute their research without repeating values from previously published, smaller number tables.

If, for example, one draws a single card from a thoroughly shuffled
deck, the probability distribution from which this draw is done is
uniform: it is equally likely that any particular card will be
chosen. Similarly, random numbers are typically defined as numbers
drawn from a uniform distribution over all possible numbers in some
range. A difficulty with this definition is that the randomness of
a number is defined in terms of that range. Given a number such as
42, it is impossible to tell how random a selection it was. To
determine randomness without knowing the means of generation, one
must consider a sequence of numbers; knowing the range in which the
numbers are supposed to lie or, more generally, the distribution
from which they are supposed to be drawn, is also
essential.
Digital computers are deterministic devices — the
next state of the machine is determined entirely by the current
state of the machine. Thus, computer-based random number generators
are more technically described as pseudorandom number generators.
The somewhat dismissive-sounding “pseudo” refers to the fact that a
deterministic process (a computer program) is being used to
generate sequences of numbers that appear to be uniformly
distributed. This works well in practice for sequences that
aren’t astronomically long. But eventually, for
long enough sequences, the deterministic nature of a pseudorandom
number generator will be unmasked, in that eventually statistical
properties of the generated sequence will start diverging from
those of a true random process. In an extremely long sequence, for
example, a true random process will generate the same number many
times in a row. A version of 10 PRINT
running using a true random process will eventually generate the
regular image in figure 40.4 (and the image in figure 40.5, and
every other possible pattern), while the pseudorandom number
generator in the Commodore 64 will not. Tests for long runs are one
of the many statistical tests used to judge the quality of
pseudorandom number generators.
An obvious question to ask about randomness is why a computer would
need to implement it in any form. Chance might produce stunning
poetry, breathtaking art, uncanny music, and compelling games, but
what is its role in the sciences? Why provide a calculating machine
with the ability to generate random numbers in the first place?
Certainly, one stereotype of computing is that it is done exactly, repeatedly, with
perfect precision and accuracy. Computers are commonly thought to
order the world, to sift through reams of data and then model
possible outcomes, possible futures, providing
certain — and deterministic — answers. Yet a function to
generate random numbers was present in the first Dartmouth BASIC.
Every version of BASIC since then has had one or more ways to
create random numbers. Nearly every contemporary programming
language, including Python, Perl, Java, JavaScript and C++, has a
built-in way to generate randomness.
Quite simply, the answer to this puzzle is that randomness is
necessary for any statistical endeavor, any simulation that
involves unknown variables. Practically everything
involves unknown variables: the meteorological conditions at a
rocket launch site, the flow of air under a
bomber’s wings, and the spread of an infectious
disease. Additionally, there is the movement and halting of
traffic, the cost of bread, and the drip of water from the kitchen
faucet. Forecasting any of these phenomena requires reckoning with
uncertainty, which in turn requires a pool of random numbers.
Furthermore, one or two random numbers are not enough. Large-scale
statistical calculations or simulations require large batches of
random numbers.
John von Neumann was the first to propose the idea of harnessing a
computer to generate random numbers (Knuth 1969, 3). It was around
1946 and von Neumann was fresh off the Manhattan Project and soon
to begin his lead work on the hydrogen bomb. Seeking a way to
statistically model each stage of the fission process, von Neumann
and his colleague Stanislaw Ulam first relied on the Monte Carlo
method to generate tables of random numbers. These tables, however,
soon grew too large to be stored on computers (Bennett 1998,
138–139). Von Neumann’s solution was to design a computer program to produce random numbers
on the fly, using the middle-square method. It worked by squaring
an initial number, called the seed, and extracting the middle
digits; this number was then squared again, and the middle digits
provided a new random number (von Neumann 1961). Because each
number is a function of the one before it, the sequence, as Donald
Knuth explains, “isn’t random, but it appears to be”
(3) — that is, it is “pseudorandom.”


GRAPHING RANDOM MAZES
Randomness has enabled the construction of mazes for decades. These
mazes are not grown in a careful arrangement of hedgerows, or built
amid the mossy walls of Cretan dungeons. Instead, they are
typically graphs, mathematical objects consisting of a set of nodes
(also called vertices), pairs of which may be connected with a link
(also called an edge). Graphs, or networks,
don’t need to have any particular geometry. They
are simply nodes linked to other nodes, and they can be drawn on
paper in many different ways that are correct
representations.
Consider, however, a piece of graph paper, blank white except for a
regular grid of pale blue lines. Each point where two lines cross
can be taken to represent a node, while the lines between these
points can define links. This construction, based on a lattice, is
a special kind of graph called a grid graph. Using a pencil and
tracing only along the pale blue demarcations, how does one draw a
maze whose links (hallways) connect all of the nodes (rooms) to
each other?
Graph theory, a field of mathematics, offers a number of methods
for producing random mazes of this kind. The most well-known
approaches are algorithms for calculating a minimal spanning tree,
a graph in which all links are connected and with only one simple
path between any two points. (Minimum spanning trees are found to
solve problems in various domains, from phone networks to
demographic analysis.) Because they lack
cycles — there is exactly one path between any two
nodes —  the mazes produced by such trees are
called “perfect mazes.” Spanning
solutions are not always mazes in the multicursal sense; they
don’t need to have forking paths. For example,
on a grid graph, it’s possible to create a
minimal spanning tree using a single line, winding back and forth
on a labyrinthine path until the page is filled. Of the myriad
spanning solutions to a piece of graph paper, however, the vast
majority of them are
branching mazes. Thus, selecting a solution at random can be a good
way to produce different mazes. A straightforward maze-generation
technique involves adding random values (or weights) to all the
links in the grid graph, then employing an algorithm to find a
minimum spanning tree and thus generate a maze. Depending on the
algorithm used, the resulting mazes may reflect different
aesthetics, for instance, having different proportions of shorter
and longer paths.
Significant minimum spanning tree algorithms were pioneered by
Czech mathematicians in the early twentieth century (Otakar
Borůvka in 1926; Vojtěch
Jarník in 1930) and independently rediscovered many
times thereafter, including decades later by computer scientists writing in English (e.g., Sollin in
1965). Two of the most well-known maze-generating algorithms in
graph theory today are Joseph Kruskal’s and
Robert Clay Prim’s. Both algorithms were
published in 1957 — although
Prim’s was a rediscovery of
Jarník’s and was in turn
rediscovered by Dutch computer scientist Edsger W. Dijkstra, famous
opponent of GOTO, in 1959 (Foltin 2011, 15). Both are greedy algorithms, which means
that they choose the best link to take at every turn.
Kruskal’s algorithm chooses across the entire
graph, while Prim’s algorithm builds up a
connected path. These algorithms can be modeled with paper and
pencil, but computational randomization allows them to rapidly
generate a plethora of maze forms, thanks to the interaction of the
regularity of the grid, the deterministic algorithm, and the random
weighting of links.




COMPUTATIONAL RANDOMNESS IN THE ARTS



To those interested in randomness and expressive culture, perhaps
the most intriguing element of Donald Knuth’s
magisterial discussion of random numbers appears in a footnote.
Knuth recalls a CBS television documentary in 1960 called
“The Thinking Machine” which featured “two Western-style
playlets” written by a computer (Knuth 1969,
158–160). In fact, three playlets were acted out
on national television that day in October 1960, generated by a
TX-0 computer housed at MIT’s Electronics
Systems Laboratory. SAGA II, the script-writing program behind the
mini Westerns, took programmers Douglas Ross and Harrison Morse two
months to develop and consisted of 5,500 instructions (Pfeiffer
1962, 130–138). The key to SAGA II was its
thirty “switches,” which made “various alternative or branching
paths” possible (136). “Among other things,” Pfeiffer observed, “the
robber may go to the window and look out and then go to the table,
or he may go to the table directly. You cannot tell in advance
which one of these alternatives the program will select, because it
does the equivalent of rolling a pair of dice”
(136).
Even before the SAGA II playlets, there were other literary
experiments with randomness and computers. Noah Wardrip-Fruin
identifies the British computer scientist Christopher Strachey as the creator of
the first work of electronic literature, a series of
“love letters” generated by the
Ferranti Mark I computer at Manchester University in 1952
(Wardrip-Fruin 2005). Affectionately known as M.U.C., the
Manchester University Computer could produce the evocative love
letters at a pace of one per minute, for hours on end, without
producing a duplicate. The “trick”
is, as Strachey put it, the two model sentences (e.g.,
“My adjective noun adverb verb
your adjective noun”
and “You are my adjective noun”)
in which the nouns, adjectives, and adverbs are randomly selected
from a list of words Strachey had culled from
Roget’s Thesaurus.
Adverbs and adjectives randomly drop out of the sentence as well,
and the computer randomly alternates the two sentences. On the
whole, Strachey is dismissive of his foray into the literary use of
computers, using the example of the love letters simply to
illustrate his point that simple rules can generate diverse and
unexpected results (Strachey 1954, 29–30).
Nonetheless, a decade before Raymond Queneau’s
landmark combinatory work One Hundred Thousand Billion Poems,
Strachey had unwittingly laid the foundation for the combinatory
method of composition by computer, a use of randomness that would
grow more central to literature and the arts in the following
decades.
Other significant early works involving random recombination had
more visible connection to literary tradition and artistic
movements. The 1959 “Stochastic
Texts” of Theo Lutz combined texts from Franz Kafka
with logical operations to produce “EVERY CASTLE
IS FREE. NOT EVERY FARMER IS LARGE” among other
statements (Lutz 1959/2005). In the next decade, Fluxus artist
Alison Knowles and James Tenney, a programmer who worked in
FORTRAN, devised A House of Dust.
The program’s output combines a regular stanza
form and repetition with random variation in vocabulary, and was
printed on a scroll of line printer paper for a 1968 chapbook
publication (Pearson 2011, 194–203). More than a
decade later, Jackson Mac Low made use of the venerable book
A Million Random Digits
to devise “Converging Stanzas,”
which were randomly populated with words from the 1930
850-word Basic English Word List
(Mac Low 2009, 236). This poet’s
“Sade Suit” similarly used playing
cards and A Million Random Digits
to rewrite the work of Marquis de Sade (46).
Early Experiments in Computational Art



The 1960s were a time of radical experimentation with randomness in
the visual arts. Even though computers were available at that point
for the exploration of chance operations, they were used in a very
limited way because it was difficult to gain access to the
machines, and there was a general distrust of computer technology
in the arts. The 10 PRINT
program is remarkable because it was created later, when these
barriers were far fewer. The Commodore 64 was relatively
inexpensive and accessible. The public image of the computer was
changing from a machine that supported technocracies to a tool for
self-empowerment and creativity. Before personal computers,
calculating machines could only be found in universities and
research labs and, because of their cost and perceived purpose,
they were typically used exclusively for what seemed more serious
work, not for creating aesthetic images. When artists did gain
access to these machines, it was typically through
artists-in-residence programs at companies such as Bell Labs and
IBM, and through infrastructures such as Experiments in Art and
Technology (E.A.T.) based in New York or the Los Angeles County
Museum of Art’s Art and Technology initiative.
Many of the first aesthetic computer graphics were made not by
artists, but by mathematicians and engineers who were curious about
other uses to which the machines at their labs could be
put.
Within the first years that computer images were made, random
processes were explored thoroughly. The first two exhibitions of
computer-generated graphics appeared in art galleries in 1965; both
shows included pieces that were created using random values. In New
York, the works of A. Michael Noll and Bela Julesz, both researchers at Bell Labs, were
exhibited at the Howard Wise gallery from April
6–24, 1965, under the title “Computer-Generated Pictures.” In
Stuttgart, the works of Georg Nees and Frieder Nake were exhibited
at the Wendelin Niedlich Gallery from November
5–26, 1965, under the title
“Computer-Grafik Programme.”
In 1962, Noll published a technical memorandum at Bell Labs
entitled “Patterns by 7090,” the number referring to the IBM 7090 digital computer. He explained a
series of mathematical and programming techniques that use random
values to draw “haphazard patterns” to a Carlson 4020 Microfilm Printer. The eight patterns documented
in the memo are the basis for his Gaussian Quadratic image that was
exhibited in the 1965 exhibition. Noll used existing subroutines of the printer to draw a
sequence of lines to connect a series of x- and y-coordinates that
he calculated and stored inside an array. The x-coordinates in the
array were generated by a custom subroutine he wrote called WNG
(White Noise Generator), which produced random values within the
range of its parameters, and the y-coordinates were set using a
quadratic equation. Through this series of patterns, Noll explored
a tension between order and disorder, regularity and random
values.
In 1965, Nake created his Fields of Rectangular Cross Hatchings
series, which succeeds through pairing ordered patterns with random
placement (figure 40.2). Nake explained the way random values are
used in the images:
Within a given (arbitrarily chosen) image size, a random number of
hatchings were generated. Each one of them was determined by the
following random variables: location (x, y), size (a, b),
orientation of lines within rectangle (horizontal or vertical),
number of lines, pen. So for each rectangle there were seven random
numbers determining its details. (Nake 2008)


After the first wave of visual images were created on plotters and
microfilm at universities and research labs, a few professional
artists independently started to gain access to computers and use
them in their practice. The artists with the most success
integrating a computer into their work had previously created
drawings using formal systems. These artists continue to use
computers in their work to this day. Artists who worked seriously
with computers in the late 1960s, either individually or with
technical collaborators, include Edward Zajec, Lillian Schwartz,
Colette Bangert, Stan Vanderbeek, Harold Cohen, Manfred Mohr, and
Charles Csuri. All of them employed random numbers in their early
works created with software.
Manfred Mohr, for example, started as a jazz musician and later
studied art in Paris; he began writing software to create drawings
in 1969, at the Meteorological Institute of Paris, during the night
after researchers had left for the day. In 1971,
Mohr’s work was featured in “Une Esthétique Programmée” at the Musée
d’Art Moderne de la Ville de Paris (see figure 40.3), the first solo exhibit of artworks created with a computer
at a museum. Random values are used extensively in the creation of
the work shown.
[image: Frieder Nake, Fields of Rectangular Cross Hatchings, Overlaid by Vertical Lines. 22/10/65 Nr. 2. Computer drawing, ink on paper, 50 × 44 cm. Collection Etzold,Museum Abteiberg Mönchengladbach. Courtesy of Frieder Nake. ©1965, Frieder Nake.]

Figure 35-2. Frieder Nake, Fields of Rectangular Cross Hatchings, Overlaid by Vertical Lines. 22/10/65 Nr. 2. Computer drawing, ink on paper, 50 × 44 cm. Collection Etzold,Museum Abteiberg Mönchengladbach. Courtesy of Frieder Nake. ©1965, Frieder Nake.

[image: Manfred Mohr, P-071, 1970. Plotter drawing, ink on paper, 13.75 × 16.5"/35 × 42 cm. Courtesy of bitforms gallery nyc. ©1970, Manfred Mohr.]

Figure 35-3. Manfred Mohr, P-071, 1970. Plotter drawing, ink on paper, 13.75 × 16.5"/35 × 42 cm. Courtesy of bitforms gallery nyc. ©1970, Manfred Mohr.

Charles Csuri’s Random War
(1967) is an early notable work of computer art to use random
values. Like much of Csuri’s early computer work
and unique in relation to his contemporaries, Random War
is figurative rather than abstract. This plotter drawing comprises
outlined military figures, patterned off of the toy figures of
little green army men that were popular at the time. Each figure,
named after a real person, is placed randomly on the page and
randomly given a status: dead, wounded, or missing. The soldiers of
one army are drawn in red, of the other army in black; the name and
status of each soldier appear at the top of the drawing. In general
terms, Csuri’s work comments on the often
arbitrary nature of war through both its form and its content; more
specifically, with his reliance on random number generation, Csuri
gestures toward the days of computers, random numbers, and their
inextricable link to the Cold War.

Acceptance and Resistance



While the first decade of computer-generated art was well
documented in magazines, books, and exhibition catalogues, there
are fewer source materials from the 1970s, when public interest
veered and the energy needed to publish and exhibit waned. Later in
the decade, computer graphics started to make their way into
advertising and films. The 1982 film Tron
is a landmark in the history of computation and aesthetics that
pushed graphics to a new aesthetic level and therefore revealed the
limitations of computer imagery at that time. Tron’s
images are purely geometric and cold; they lack the organic
qualities of our natural world. Ken Perlin, one of the programmers
for the graphics in Tron,
expressed frustration with the clean look. Later, in 1983, he
developed a technique called Perlin Noise to generate organic
textures that have a random appearance even though they are fully
controllable to allow for careful design. Perlin Noise makes it
possible for computer graphics models to have the subtle
irregularities of real objects; it is used to create hard surfaces
such as rocks and mountains and softer systems like fire and
clouds. By the 1990s, it was being used extensively in Hollywood
special-effects films and had been incorporated into most
off-the-shelf modeling software.
Today the most widely known artists to use random values still do
so without computers. For example, 2002 Turner Prize winner Keith
Tyson designed sculptures not by using a computer to produce random
numbers, but by rolling dice. One reason for this sort of
reluctance to use computers, certainly, is the stigma surrounding
computers in art. As Manfred Mohr remarked in an interview,
“I called my work generative art, or
occasionally also algorithmic works. The problem was that no-one
understood either of these terms, and I was
forced — so to speak — to declare
my drawings as art from the computer . . . people accused me of
degrading art, because I was employing capitalistic instruments of
war — computer was a word non grata!”
(Mohr 2007, 35). While Mohr was referring to the situation in the
1970s, the aversion to computers in art remains strong
today.
More recently, however, as a new generation of visual artists have
started to program their work, computed random numbers are playing
an increasing role in the visual landscape. The most prominent
programming languages used by visual artists have functions for
generating random numbers and noise values, as well as for setting
the random seed value to allow for the repetition of sequences. With the perspective of time, it
seems that aesthetic computational work and random values are
intertwined. Writing in 1970, Noll highlights randomness as an
essential feature of the computer in relation to the
arts:
The computer is a unique device for the arts since it can function
solely as an obedient tool with vast capabilities for controlling complicated
and involved processes, but then again, full exploitation of its unique
talents for controlled randomness and detailed algorithms could result in
an entirely new medium — a creative artistic medium. (Noll
1970, 10)




RANDOMNESS IN CONTEMPORARY COMPUTING
In the many examples of randomness given here, the random element
of the process — whether computational, literary,
or aesthetic — is often foregrounded, or at least
made very obvious. Randomness is not always visible, however, even
though it is often used in ordinary computing tasks. Randomness
plays an essential role in the security of networked computers, for
instance, and is also a part of popular computer games. Other uses
of randomness lie beyond the everyday computing experience, but
security, networking, and gaming are a few of the ones that are
closest at hand.
When a computer needs to generate a new password for a user, a URL
that will let someone reset a password, or a CAPTCHA to keep
automated spammers at bay, randomness is invoked. A nonrandom
password could easily be predicted, but a random password, URL, or
distorted word is much harder to crack through guessing or brute
force. Randomness also plays a behind-the-scenes role in protocols
such as SSH (Secure Shell) and SSL (Secure Sockets Layer) in a few
ways, including the generation of keys for encryption and padding
out the rest of a block when a plain-text message is too short to
complete it. Without randomness, it would not be possible to
complete a secure credit card transaction on the Web, which happens
over SSL. Early versions of SSL as implemented in the Netscape
browser suffered from being insufficiently random: The seeds for
random number generation were the current time, the process ID, and
the parent process ID, which were sufficiently predictable to leave
the browser vulnerable to attack. Better randomness was the
solution to this problem.
Computers using Ethernet — almost all of those
that are plugged into wired networks — communicate
with one another thanks to randomness, too. All systems on a single
local area network send information over the same wire. If two of
them start sending on this single wire at the same time, what is
known as a “collision” occurs; the
data sent is not intelligible to the intended recipients. When a
collision happens, the computer that detects the problem sends a
jamming signal and tries to restart the transmission. But rather
than restarting immediately, the computer chooses at random to
start or wait — and the other computer that was
trying to send does the same. If there is another collision, the
computers either send immediately or wait for one of three
intervals. The increasing number of intervals is part of the
technique of exponential backoff; the selection of one of these
intervals at random is an essential part of this method of avoiding network
congestion.
A typical computer user of the 2010s will encounter randomness in
many computer games. Randomness will shuffle the cards in poker or
solitaire, for example, and will be invoked to arrange jewels and
tiles in casual games. Randomness may also be used to determine the
behavior of computer opponents, whether in poker, chess, or a
first-person shooter. Some action, arcade-style, open-world, and
other types of games incorporate randomness in other ways to
determine what happens. Many early games and certain contemporary
ones, however, are entirely deterministic. As those who discovered
and exploited Pac-Man patterns know, that game is deterministic; Ms. Pac-Man,
in contrast, uses randomness.
Though modern computers have many ways to provide initial values to
seed their pseudorandom number generators, when higher levels of
randomness are required one of the most reliable methods is to look
beyond the computer. External entropy collection means that the
random seed cannot be determined by knowing information about the
computer’s hardware, a common source for seeds
inside the computer. In some cases the computer has to turn to a
human to become more random, recording data from users mashing the
keys on their keyboard or wiggling their mouse around to generate a
random key or password. Even more unguessable are inputs from
physical systems of sufficient
complexity — anything from video of a lava lamp to
atmospheric radio distortions can be used to create random numbers
for computation. These levels of randomness are now required for
demanding applications like high-level cryptography and scientific
simulations. With continual increases in processing power, attacks
on encryption are becoming easier, and the goal of making random
numbers more
random will be critical for securing society’s
constant digital transactions.





THE COMMODORE 64 RND FUNCTION



The way that 10 PRINT invokes the randomness provided by the Commodore 64 is of interest
for reasons that will each be explored in turn. First, using
randomness is aesthetically necessary in this program; there is no
other way to achieve a similar effect. Second, the methods used in
Commodore 64 BASIC are historically quite typical of computational
approaches to pseudorandomness since the 1950s. Finally, out of
several common approaches to randomness available on the Commodore
64, 10 PRINT uses a very standard method that is well suited to experimentation,
debugging, and the production of canonical results, although this
method is not without its deficiencies.
10 PRINT produces a wrapping series of diagonal lines that alternate between left and
right unpredictably. This unpredictability is crucial to producing
the impression of a maze. Looking at variations of
10 PRINT that have regular or no alternation demonstrates the significance
of randomness in the program. It’s possible to
write an even simpler program than 10 PRINT to
draw only the left diagonal to the screen in a regular pattern
(figure 40.4):
10 PRINT CHR$(205); : GOTO 10
This program can be extended by writing the other diagonal
character to the right to form a chevron that repeats (figure
40.5):
10 PRINT CHR$(205)CHR$(206); : GOTO 10
[image: Screen capture from 10 PRINT CHR$(205); : GOTO 10, a regular repetition of the ╲ character.]

Figure 35-4. Screen capture from 10 PRINT CHR$(205); : GOTO 10, a regular repetition of the ╲ character.

[image: Screen capture from 10 PRINT CHR$(205)CHR$(206); : GOTO 10, a regular repetition of the ╲ character followed by ╱.]

Figure 35-5. Screen capture from 10 PRINT CHR$(205)CHR$(206); : GOTO 10, a regular repetition of the ╲ character followed by ╱.

The next step in this elaboration is the canonical
10 PRINT, which draws either the left or right diagonal to the screen based
on the result of the random number (figure 40.6):
10 PRINT CHR$(205.5+RND(1)); : GOTO 10
In 10 PRINT,random numbers are provided through RND,
one of ten mathematical functions available in BASIC since the
earliest version of the language. As described the original
Dartmouth BASIC manual (1964), RND produces a “new and different random
number” between 0 and 1 “each time it is used in a program” (39). These numbers can then
be used to drive unpredictable processes, as in fact they do drive
the coin-toss decision between diagonal lines in
10 PRINT output. A similar process might also determine the direction
changes of ghosts in Ms. Pac-Man
or the way other game elements appear or behave.
RND is, like most computational sources of randomness, a pseudorandom
number generator. While there may be no apparent pattern between
any two numbers, each number is generated based on the previous one
using a deterministic process. When the first number is the same,
the entire sequence will always be the same. In the case of the
Commodore 64, this is particularly important because the same seed,
and thus the same first number, is set at startup. So when
RND(1) is invoked immediately after startup, or before any other
invocation of RND, it will always produce the same result: 0.185564016. The next
invocation will also be the same, no matter what Commodore 64 is
used or how long the system has been on. The next
invocation — and all others — will also be the same. Since the sequence
is deterministic, the pattern produced by the 10 PRINTprogram
typed in and run as the first program is always the same, on every
computer or well-functioning emulator.
When called on any positive number,
as when RND(1) is invoked in 10 PRINT,
RND produces the next number in this sequence. RND(8),
RND(128), and RND(.333) do exactly the same as RND(1).
RND, however, has two other modes besides the one used in
10 PRINT. The second is stopwatch-based: when RND(0)
is called, the clock time since the computer was powered on is used
in generating a new seed, meaning that if RND(0) replaces RND(1),
each run of 10 PRINT at a different second should generate a different output. After a
single call to RND(0), subsequent calls to RND(1)
will continue generating numbers in that new sequence.
[image: Screen capture from 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, which has a 50/50 chance of writing a ╲ or ╱ at each loop.]

Figure 35-6. Screen capture from 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, which has a 50/50 chance of writing a ╲ or ╱ at each loop.

The third mode for RND applies when any negative number is called.
A call to RND(−17) stores −17 as the seed value for the random
number generator, directly, and produces a new number. This
negative seeding must be followed by positive calls to the
function, such as RND(1), in order to provide a useful sequence. Because negative calls
simply set the seed, calling RND(−1) repeatedly will always return 0.544630526. For this reason,
10 PRINT could not be a single-line loop that calls a negative
RND value; that program would output the same diagonal again and again.
A single call to RND, however, with any negative number, followed by the rest of
the 10 PRINT program, will generate a unique (and repeatable)
10 PRINT pattern.
Pseudorandomness, however lacking it may sound, is generally
acceptable and in many situations desirable. Engineers running a
computer simulation, for example, often have many random variables,
but every run of the simulation needs those variables to have the same values;
otherwise the program cannot be tested or the experiment repeated.
Pseudorandom number generators are also highly useful in hashing,
since they allow data to be distributed widely but also placed in
known locations. Similarly, they are useful in cryptography, where
it is vital that sequences be repeatable if (and only if) the
initial conditions are known.
The Commodore 64 User’s Guide
introduces the concept of randomness using an example that
sidesteps the origins of randomness in computing. There is no
mention of the hydrogen bomb, computer-generated literature, or
prime numbers. Randomness comes into play in the shape of a game
when it is necessary to, as the manual puts it,
“simulate the throw of dice”
(Commodore 1982, 48). This example takes the reader back to
preindustrial notions of randomness. Yet, centuries ago, long
before Mallarmé provided his assurance that a throw of
the dice would not abolish chance, Sir Walter Raleigh wrote of this
event as apocalyptic:
Dead bones shall then be tumbled up and down,

In every city and in every town.



Fortune’s wheel and what Paul Auster
called The Music of Chance have long been considered a matter of life and death. As
10 PRINT scrolls its playful, pleasing maze pattern upon the screen, there
may be the faintest echo of the dead bones of the dice and the
random simulation of the hydrogen bomb. And perhaps, as well, there
is the transformation of this grim, military use of randomness into
a thing of beauty.

40. REM ONE-LINERS



One-liners, as single-line programs such as 10 PRINT
are known, predate home computing, the exchange of BASIC code in
magazines, and even the BASIC programming language itself. These
concise little programs were written at least as early as the
beginning of the 1960s. The language that was most famous for
writing such programs was APL, designed by Kenneth Iverson using
special (non-ASCII) notation. APL was first described in his 1957
book A Programming Language and was first implemented at IBM beginning in 1960.
In APL there is no limit on the length of a line; anything that a
programmer can express as a single statement counts. A report shows
that “all ‘practically’ computable
functions” can be written as APL one-liners (Lipton and
Snyder 1977, 2), so perhaps one-liners in this language should not
be particularly impressive. Programmers have nevertheless been
impressed by them. APL one-liners have been published that solve
the problem of placing N queens on an N × N
chessboard (Selfridge 1977, 243) and that completely encode John
Conway’s Game of Life (McDonnell 1988, 6). The
final Game of Life APL function presented is only nine tokens long.
While not everyone involved with computing shares an enthusiasm for
one-liners, or for APL, the exchange and academic publication of
APL one-liners does demonstrate that interest in this form of
program was not limited to amateurs or newcomers to
computing.
In the early 1980s, magazines published one-line programs,
sometimes regularly, to fascinate and intrigue home computer users
and to help them explore programming. In the Commodore-specific
magazine RUN, they appeared in a section near the front of the magazine entitled
“Magic,” which contained “Hints and tricks that will let you perform
computing wizardry.” Some of their one-liners and tips
were clearly for amusement and educational purposes. Others were
practical programming aids. Many were quite expressive and produced
interesting visual effects.
Here is the first trick, numbered zero in hexadecimal, in the very
first “Magic” section from the
inaugural issue of RUN:
Trick $00. This month’s “one line special” is an
antiquity — from the far-off days of 1978, when an 8K Commodore PET cost
$795, and readable documentation was unheard of. There
weren’t any books, and the only magazines were newsletters produced by
amateurs.
The PET Gazette was one of them, and here is one of its early
offerings, called “BURROW”:
1A$="[up][down][left][right]":PRINTMID$(A$,RND(.5)*4+1,1)"*[left]";:FORI=1TO30:NEXT:PRINT"[rvs on][space][left]";:GOTO1
It fits on one 40-column line, and it does get exciting. We’d like to see your
one-line programs, and we want to print at least one good one each
month. Programs can be fun, funny, useful or useless, as long as
they fit in 40 columns or less. What do you have? (Sander
1984)


The program featured here (see figure 45.1) moves the cursor
randomly either up, down, left, or right, prints an asterisk, moves
left over it, turns on reverse video, prints a space, and moves
left over that — and then repeats. This means that
it will “dig” a reverse-video hole
(green, not black, on a PET computer) haphazardly, although
orthogonally, from its starting point to wherever it ends up around
the screen. Its mazelike path involves both regularity (each move
is directly along an axis) and randomness (which of the four
directions it moves in is chosen at random), producing the promised
excitement. The program has some affinity with 10 PRINT,
although 10 PRINT creates
a different sort of scrolling pattern and suggests a structure
rather than traversing the screen a character at a time.
This printing of the “BURROW” program, already declared an antique, also shows an awareness of
computing history and a willingness to rediscover older programs so
they can be enjoyed by a new generation of programmers and
users.
Here is another intriguing one-liner from RUN
(Rapp 1985):
When he’s not looking, run this on a
friend’s VIC or C-64. Then get him to type a
line or two, and watch the fun as he scrambles for his
warranty. 10 POKE207,0:POKE204,0:WAIT198,1:GETA$: PRINT"{CTRL RVS OFF}" CHR$(ASC(A$)+1.1*RND(0));:GOTO 10


This program is similar to 10 PRINT
in a few ways. It runs in an infinite loop; it also makes use of
the RND function. These are true of “BURROW”
as well. An additional similarity between this April
Fool’s program and 10 PRINT
is the use of CHR$.
There is a significant difference, too. Rapp’s
program doesn’t do anything obvious when run.
After running it, the cursor sits blinking as if one were in the
BASIC interpreter. Once run, this one-liner is actually in control
of keyboard input and screen output and effectively intercepts input from BASIC and the Commodore
64’s operating system, the KERNAL, running atop
them. Typing something will (often) cause the typed characters to
appear on the screen as they usually would, but about one time in
eleven, the next character in the PETSCII sequence will appear
instead, possibly transforming the user’s
typed 10 PRINT "HELLO"  to the puzzling and frustrating 10 PRJNT "HFLLO".
[image: Screen capture from one-line “BURROW” program.]

Figure 40-1. Screen capture from one-line “BURROW” program.

[image: Screen capture from one-line program featured in RUN magazine to check monitor resolution.]

Figure 40-2. Screen capture from one-line program featured in RUN magazine to check monitor resolution.

10 PRINT uses RND
differently, to draw from an even distribution of two characters.
As the Commodore 64 User’s Manual
explains, this distribution can be skewed, as it is in the first
variant of the program presented in the first remark, written in
BASIC. Even with a somewhat unbalanced distribution, the larger
impression is still mazelike. The “essential
frustration” of the maze, on the one hand, is one that
is evident and stems from its interlocking, larger structure to
which the randomness contributes. Rapp’s prank
is tricky, on the other hand, because it is biased toward
intermittent unpredictability and operates invisibly.
By the late 1980s, although the “Magic” section continued in
RUN (through the magazine’s last issue), it was
handed off to other editors and filled with utility programs, in
BASIC and assembly, that were significantly
longer — often around twenty lines. This late
one-liner from RUN
(Hubbard 1987) offers help for the Commodore user looking for a new
monitor and shows the utilitarian turn that programs took in later
years (see figure 45.2):
10 PRINT CHR$(14):FOR A=1TO40*23:PRINT",V";:NEXT
Enter the program and run it. The screen will fill with 23 lines of
commas and lowercase V’s. To check the
resolution, look at the single pixel that forms the point of the
center of the v or the tail of the comma. On a monochrome monitor
the pixels should be a single round point of light.


Some one-line utilities were compatible across BASIC machines such
as the Commodore, Apple, and Atari home computers and might also
run on the original Dartmouth BASIC — but many of
the fun and exciting ones were specific to particular platforms.
The numerous versions of BASIC included some which included
commands such as PLOT and SOUND to
facilitate making graphics and music. Of course, a one-liner in a
BASIC of this variety could take advantage of these special
commands. In these cases, one-liners were often teaching tools:
programs that helpfully introduced commands needed to perform higher-level tasks.
This practice continues in the contemporary practice of programming
tutorials; one example is Peteris Krumins’s
“Perl One-Liners Explained” (Krumins
2009–2011). It introduces more than a hundred
single-line pieces of code such as:
perl -MPOSIX -le'@now = localtime; $now[0] -= 7;
$now[4] -= 14; $now[7] -= 9; print scalar localtime
mktime @now'
Each of Krumins’s examples includes a
description — often a somewhat mysterious one,
such as this program’s:
“Print date 14 months, 9 days and 7 seconds
ago.” The first question a non-coder might consider is
“Why that? What was 14 months ago?”
This sort of arbitrary program construction is not valuable as a
utility in its given form. Rather, it is useful to try out because
of what the programmer can accomplish by daring to change it and by
inserting the code into a more complex program. That code snippet
could be useful, for example, in a vacation scheduling or beer
fermentation system. It resembles 10 PRINT
in that it unlocks the workings of higher-level functions (such
as localtime and
mktime). 10 PRINT arouses
interest not only from its visually active display with minimum
code but because that code reveals an elegant means of accessing
the higher-level video terminal system, which is an entry point
vital to writing a diverse area of types of programs.
Many programmers of one-liners took advantage of the BASIC commands
for high- and low-resolution graphics on computers contemporaneous
with the Commodore 64, such as the Apple II. Apple II users enjoyed
a rich culture of one-line graphics display programming as well as
a tradition of “two-step” programs, which consisted of two lines instead of one. Apple II users also
benefited from having a longer maximum line size than on the
Commodore.
The two-line format came about because often one line was reserved
to initialize the graphics display hardware and other variables. It
did not and should not have run multiple times. The second line was
a loop that, like 10 PRINT,
produced animated graphical output. In 10 PRINT,
an initialization line was unnecessary, because the default state
of the Commodore 64 was a pseudo-graphics terminal: at power-up not
only was the computer in a state to immediately begin accepting and executing
BASIC commands, it could also draw graphics characters from a set
which was printed on the keyboard. Computers, such as those in the
Atari and Apple series, had BASIC multimedia commands
(COLOR, GR, PLOT, HLIN, PSET,
to name a few) to access their platform hardware, and could be said
to have led to more impressive one-liners that were not possible on
the Commodore computers — something that only
increased the value of the most impressive Commodore one-liners,
including 10 PRINT.
By way of example, consider the one-liner
“Icicle Storm,” developed for this
book to demonstrate how the use of one-liners can communicate
valuable details about a computer system. The program generates a
simple multimedia display that looks like the sky filling with
icicles, drawn using one of the diagonal graphics characters used
in 10 PRINT (see figure 45.3):
10 POKE 1024+RND(1)*1000,78: GOTO 10
Although it is a minimal simulation, the code highlights several
useful details about the Commodore 64 platform. First, the repeated
calls to POKE the distribution 1024+RND(1)*1000
indicate setting values in a section of memory. This is the
“direct route” or memory-mapped access to the text/graphics terminal on the platform. To
experienced programmers of other computers, this one-liner
communicates “This computer has a screen memory
just like many others. This particular one begins at 1024 and is
1000 bytes long.” The transfer of knowledge from
platform to platform is a key part of the practice of programming;
another key part is learning the differences among platforms.
Sometimes knowing just a few details about a new system enables one
to leverage a great deal of previous experience into competency of
the new system.
While such addresses were not secret — they could
be obtained simply by buying the Commodore 64 Programmer’s Reference Guide
that Commodore published (1982) — they held a
certain value when printed material about programming was still
sparse, in the early days of home computing. While commercial
software empowered users within the realm of their applications,
short programs in books and magazines illustrated how to make the
computer do impressive things and empowered readers to program.
They associated brief BASIC texts with sufficiently compelling
title and graphical output or other effects to allow one to build
up a catalogue of  appropriately useful code segments. Thus “Icicle
Storm,” like 10 PRINT, is not an effort to tell a story about weather. It is a cartoon
that presents the physics of the virtual world it runs in, the
text/graphics terminal, through the speed of the screen update and
the properties of its regular grid.
[image: Screen capture from the “Icicle Storm” one-liner. Characters are drawn at random positions on screen one at a time.]

Figure 40-3. Screen capture from the “Icicle Storm” one-liner. Characters are drawn at random positions on screen one at a time.

The slow, ruthless instantiation of icicles mimics the dynamics of
a mounting storm because the computer cannot draw them fast enough
to fill the screen instantly. The pace of that experience is
CPU-limited. It would be possible to slow down
the drawing, but not to speed it up without resorting to something
other than changes in BASIC code. Understanding the general pace or
speed at which a platform executes code is useful information to
programmers.
The kinetic movement of the storm, determined by the update rate of
the screen, fulfills the purpose of the illusion sufficiently that
the impression is uniquely identifiable and memorable. It thus
invites and aids the programmer to remember the useful numbers in
the program. As part of the cartoon illusion that the program
conjures, the evoked scene also assumes the default foreground and
background colors of the computer, producing blue ice crystals
against an azure sky. This may even be a more
appropriate and specific play on the default colors than 10 PRINT
provides.
A similar one-line program developed for this book,
“Windy Day in Chicago,” illustrates
another feature of the VIC-II that is useful to programmers, smooth
horizontal scrolling:
10 POKE 53248+22,INT(192+4+3*SIN((TIME*3.456+RND(1)
*.5))): GOTO 10
The program doesn’t change any of the characters
or colors on the screen; it simply causes everything on the screen
to move back and forth semi-regularly as if the display were being
blown around. This program demonstrates the relative simplicity of
working with the side-scrolling register in the video chip, an
advanced topic which is never taught explicitly in the Commodore 64
manuals.
Finally, another way to go about probing the capabilities of
complex chips, including the Commodore 64’s
sound chip, the SID, is to simply write random values to their
registers and attend to the result. Here is such a program for the
SID, one which produces random sounds:
10 POKE 54272 + (0*TI+(RND(1)*25)),(RND(1)*256)
AND255:GOTO 10
Computers no longer power on to the READY prompt and the BASIC
programming language, but, as the discussion of Perl one-liners
shows, short, impressive, inviting programs live on in other
languages and environments. There is more on the way that some Perl
one-liners are apprehended and remembered in the next chapter, in
the section “BASIC in Human
Memory.”
45. BASIC



The character graphics themselves, the way they line up in rows and
then in columns, and even the speed at which they
appear — these characteristics all contribute to
the aesthetic of 10 PRINT’s output. However, 10 PRINT
functions the way it does, in part, because it is written in a
specific programming language with particular affordances and
attributes: BASIC.
This “Beginner’s All-purpose Symbolic Instruction Code” has a fabled cultural and
technical history. BASIC was developed by John Kemeny and Thomas
Kurtz, two professors at Dartmouth College. In 1964 its creators
freely shared a working version of the language, leading to its
widespread adoption at the high school and college level. By that
time, general-purpose computers had existed for about two decades.
Many were still programmed in low-level machine languages, but
high-level languages, abstracted from the idiosyncrasies of an
individual machine, had also been in widespread use for a decade.
BASIC continued the evolution of high-level languages, building on
some of what FORTRAN, Algol, and other languages had accomplished:
greater portability across platforms along with keywords and syntax
that facilitated understanding the language and writing
programs.
The language was developed for an early time-sharing environment,
the Dartmouth Time-Sharing System (DTSS). This revolutionary
configuration allowed multiple programmers to use a single system
at the same time. A system of this sort — with many terminals connected to a mainframe or
minicomputer — differs considerably from the personally owned, relatively inexpensive, single-user computers of
the microcomputer era. But in the early 1960s, the DTSS also
distinguished itself from earlier systems that required the batch
processing of stacks of punched cards. Time-sharing allowed people
to engage with and explore computation in significant new ways,
with what felt like “real time” processing; BASIC was an important part of this computing
revolution. Given the educational purpose of DTSS and BASIC, ease
of use was paramount. Being easy to use helped
BASIC’s massive popularity and success.
BASIC became even more influential as microcomputers entered
people’s homes. In 1975 the MITS Altair 8800
computer, widely acclaimed as the first home computer, became
available. Perhaps the most significant piece of software for this
system was Altair BASIC, a version of BASIC that was the first
product of a young company called Microsoft. Following its success
with the Altair 8800, Microsoft wrote versions of BASIC for
many popular microcomputers. Thanks in large part to Microsoft, BASIC
became the lingua franca of home computing. BASIC resided in the
ROM of these computers, meaning a user could turn on the computer
and immediately begin programming. From the late 1970s through the
early 1980s, BASIC reigned supreme on home computers, with
10 PRINT and thousands of other programs circulating through books,
magazines, and computer club newsletters. BASIC was so canonical
that some books of BASIC programs did not even bother to mention
“BASIC” on their covers.
Despite or because of its ubiquity, BASIC has become a target of
derision for many modern programmers. Inextricably associated with
Microsoft and that bane of structured programmers, GOTO,
the language has been said to encourage tangled, unmanageable code,
to be unbearably slow, and to be suitable only for children and
amateurs. Yet BASIC has not completely disappeared, and many
programmers in the early twenty-first century remember BASIC
fondly. The language was a popular success, worked well for small
programs that let home users explore computing, and fostered
creativity and innovation in several generations of computer users
and programmers.
PROGRAMMING AND THE BEGINNING Of BASIC



While there is some dispute over who should rightly be called the
first computer programmer, many have awarded this designation to
Ada Byron, the Countess of Lovelace (1815–1852).
She was raised by her mother and educated extensively in
mathematics and logic specifically so that she might follow a
different path from that of her father, Lord Byron. Such a stark
separation in Ada’s upbringing offers a very
early example of the perceived incompatibility between computation
and poetics.
Ada Lovelace’s contributions as an early programmer are most evident in her translation of and notes to an
Italian article by Louis Menabrea about Charles
Babbage’s Analytical Engine (Menabrea 1842). In
this work, completed in 1843, she envisioned the Analytical Engine
as a general-purpose computer and described an algorithm that could
be used to output Bernoulli numbers. Although the computer to
execute Lovelace’s program was never built, her
project made an important contribution to the modern idea of
computing (Fuegi and Francis 2003). Lovelace’s
“program” was an algorithm described in mathematical notation.
The computer programs that followed in the electromechanical and
early electronic age of computing were less intelligible than
Lovelace’s algorithm, bearing little relationship to any kind of written word. For example, the ENIAC, a
fully electronic computer built at the University of Pennsylvania
from 1943 to 1945, was programmed initially by plugging in an
elaborate set of cables (da Cruz 2011). To run particular
calculations, constants were then set using dials. Though the
notion of punch cards dates back at least to Babbage in the
nineteenth century and Falcon and his loom from the eighteenth
century, programming the ENIAC was a matter of direct physical
interaction with hardware rather than the manipulation of symbols.
The operators of the ENIAC, who were primarily women,
“played an important role in converting the
ENIAC into a stored-program computer and in determining the
trade-off between storing values and instruction” (Chun
2011, 31). Historically, even as programming continued to expand
away from direct hardware manipulation and into progressively
higher levels of abstraction, these operators were inventing both
computation and the act of programming as embodied, materially
engaged activities and vocations.
Machine Language and Assembly Language



The move beyond cables and dials was accomplished with machine
language. A program in machine language is simply a sequence of
numbers that causes the computer to operate but can be understood
by humans. On the ENIAC, the numbers that formed a machine language
program were decimal (base 10), but different bases were used on
other early systems. The EDVAC used binary; the ORDVAC, octal; and
the BRLESC, sexadecimal (Bergin 2000, 62). The numbers specify what
operations the computer is to carry out and consist of opcodes
(indicating low-level commands) that may be followed by operands
(giving one or more parameters to those commands). For instance,
the opcode to add a value to the accumulator has to have one
operand after it, specifying what value is to be added, while the
opcode to increment the x register does not have any operands at
all, since that opcode by itself specifies everything that is to be
done.
To jump unconditionally to a particular absolute address, an opcode
such as “76” (in base 10) is used, followed by two bytes specifying the
address. In fact, this is the opcode used for an unconditional
branch to an absolute address on the Commodore 64. While the
sequence of numbers in a machine language program is unambiguous to
the computer, it is far from obvious at a glance even which numbers
represent opcodes and which operands. An expert in machine language
could pick out some patterns, but would often have to start at the
beginning, recognizing each opcode, knowing how many operands
correspond to those opcodes, and continuing through as if
simulating the calculations and memory storage operations as the
program executes. Writing a machine language program requires
similar low-level expertise. Working at this level is clearly
something that computers do better than people, as was acknowledged
when programming took the next step.
A more legible form of code arose in the second generation of
programming languages, called assembly languages. Assembly allows
mnemonics for operators such as lda (load accumulator), jmp (jump),
and inc (increment memory) to stand in for the more esoteric numerical
codes. On the Commodore 64, the letters jmp
followed by an absolute address are converted by the assembler to
76, translating the human-legible mnemonic into machine language.
The first assembler ran on Cambridge
University’s EDSAC in 1949. EDSAC was,
incidentally, the first computer capable of storing programs, a
feature modern computer users have taken for granted for decades
(Campbell-Kelly and Aspray 1996, 184). Although cryptic compared to
a high-level language such as BASIC, an assembler program is
nevertheless more comprehensible to a human than a machine language
program. While assembly is still used today in, for instance,
programming firmware and in the demoscene, there are usually
significant disadvantages to programming at this level. While
programming in assembly highlights technical details of platforms
and the transfer of values between memory locations and registers,
higher-level languages allow the programmer to concentrate on other
matters, such as solving mathematical and scientific problems or
modeling financial processes.

High-Level Languages



During the first decade of electronic computing, programming was
still crawling toward the ideal of Lovelace’s
“program” that specified an algorithm in high-level, human-readable form. To reach a level of
programming more appropriate for mathematical and scientific tasks, FORTRAN
(FORmula TRANslation) was outlined in 1954 and first implemented in
1957. This language, and particularly the next version of it
(FORTRAN II, which appeared in 1958), had a very strong influence
on BASIC. Just as FORTRAN was designed with mathematics in mind,
COBOL (COmmon Business-Oriented Language) was introduced in 1960 to
address business uses.
FORTRAN and COBOL both allowed for more intelligible code,
improving on assembly. But both were also developed in the context
of batch processing, for use with stacks of punched cards that
would be processed by the machine one at a time. Punch cards were
first used in the eighteenth century to define patterns in
mechanical textile looms, as discussed in the chapter Regularity,
but the concept was adopted in computing in the twentieth century.
The paragon of the punched card became known as simply
“the IBM card,” the eighty-column
punched card introduced by that company in 1928. The Commodore
64’s eighty-column logical line, which appears
as two forty-column lines on the screen, is one legacy of this
early material medium for computing.
Programs written in early versions of COBOL and FORTRAN were
specific to the punched card in definite ways. COBOL reserved
columns 1–6 for the line number and column 7 for
a continuation mark if the card’s code ran on
from the previous one. FORTRAN was similar, with columns
1–5 indicating the statement number. “Comments” (usually the program
name) went in columns 73–80 in both languages; a “C” in the first column indicated
that the whole FORTRAN card was to be considered a comment. Unless
a programmer wrote a one-liner — which in this case means writing a program that fits on a single
card — a COBOL or FORTRAN program would take the form of a stack, often a massive stack, of punched cards. These had
to be punched on a keypunch machine and fed into a card reader by
an operator. Line numbers were essential in one particular case: if
someone dropped a stack of cards and they needed to be sorted back
into order.
FORTRAN’s GOTO command was the basis for the GOTO in
the original BASIC (Kurtz 2009, 86), which was carried over into
Commodore 64 BASIC. GOTO functions in the same way the assembly language jmp
does, shifting the interpreter to a specific location within the
program. If one were simply interested in easily writing
jmp statements, BASIC offers little advantage. The benefits of BASIC
can be seen in commands such as PRINT. What takes many steps in machine language is efficiently
accomplished by this single command that employs a clear, natural language
metaphor.
BASIC was a language specifically designed for the next computing
revolution, one that would go beyond punched cards and batch
processing to allow numerous users interactive access to a system
simultaneously. This revolution was time-sharing.

Dartmouth BASIC and Time-Sharing Minicomputers



In 1962, change was sweeping through Dartmouth. Late that year, in
an article that declared the isolated college was coming
“out of the woods,” Time noted that the school had built a major new arts center and that
John Kemeny, who had made full professor at age twenty-seven, had
built “the best college math department in the
country.” Also in 1962, Kemeny and his colleague Thomas
Kurtz had begun developing a time-sharing computer system and a new
programming language to be used by all students at
Dartmouth — not just those studying math, science,
or engineering. Kemeny and Kurtz aimed for nothing less than a
computing revolution, radically increasing access to computers and
to computer programming. “While the availability
of FORTRAN extended computer usage from a handful of experts to
thousands of scientific users,” Kemeny wrote,
“we at Dartmouth envisaged the possibility of
millions of people writing their own computer programs”
(Kemeny 1972, 30).
To reach millions, Kemeny and Kurtz would have to lower the
existing barriers to programming, barriers that were related not
only to the esoteric aspects of programming languages, but also to
the physical limits and material nature of computing at the time.
The two began working with a team of undergraduates to develop the
Dartmouth Time-Sharing System and, with it, the BASIC programming
language (figure 50.1). They considered developing a subset of
FORTRAN or Algol, but found these options unsuitable (Kurtz 2009,
79). As Kurtz told an interviewer, “we wanted . . . to get away from the requirements that punched cards imposed on
users, which was that things had to be on certain columns on the
card” (81). They saw the value of an interactive,
time-sharing system for allowing users to correct minor errors
quickly rather than coming back twenty-four hours later with a new
stack of punched cards for their next scheduled batch job. They
also relaxed some of the specific requirements that were tied to
using keypunch machines and cards. Oddly enough, BASIC was so
relaxed that spaces between tokens were optional in
Dartmouth’s versions of the language. Spaces
were ignored, as Kurtz explains, because “some
people, especially faculty members, couldn’t
type very well” (81). This aspect of Dartmouth BASIC
was carried over onto the Commodore 64.
[image: This image illustrated John Kemeny and Thomas Kurtz’s essay “Bringing Up BASIC” with the caption “Students at Dartmouth working with the first version of BASIC.” Photo by Adrian N. Bouchard, courtesy of Dartmouth College Library. Copyright Trustees of Dartmouth College.]

Figure 45-1. This image illustrated John Kemeny and Thomas Kurtz’s essay “Bringing Up BASIC” with the caption “Students at Dartmouth working with the first version of BASIC.” Photo by Adrian N. Bouchard, courtesy of Dartmouth College Library. Copyright Trustees of Dartmouth College.

BASIC was designed in other ways to help new programmers, with
“error messages that were clear and friendly” and default options that would satisfy most
users’ needs (Kemeny and Kurtz 1985, 9). “If the expert needs something fancier,” the creators of the language declared,
“let the expert do the extra work!” (11). Kemeny and Kurtz envisioned BASIC as a true high-level language, allowing programmers to operate without
any detailed knowledge of the specific hardware they were using.
The initial idea, at least, was that programmers need only pay
attention to BASIC instead of the computer that BASIC happened to
be running on.
DTSS and the versions of BASIC that ran on it served almost all of
the students at Dartmouth; by 1971, 90 percent of the seven most
recent classes of freshmen had received computer training.
Dartmouth extended access to its system to other campuses and also
inspired the creation of other time-sharing systems with BASIC. By
1965, General Electric, on whose computers DTSS and the original
BASIC ran, was offering a commercial time-sharing service that
included BASIC (Waldrop 2001, 292). Well before the microcomputer
revolution of the late 1970s, other college and university students
were taking required courses in computing using
BASIC — at NYU’s business school, for instance. Even before the arrival of home computers
with built-in BASIC, the language was very widely used. The
permissive attitude of Kemeny and Kurtz led to many different
implementations of BASIC for different systems. Writing in 1975,
one observer noted that “BASIC systems differ
among themselves in much the same way that the English language as
we know it differs among the English-speaking nations around the
globe” (Mullish 1976, 6). There was a downside to this,
however: the very permissiveness that led to
BASIC’s widespread adoption and adaptation meant
that the language, as actually implemented,
wasn’t as independent of particular hardware as
Kemeny and Kurtz had planned.
In addition to BASIC and the DTSS, there is yet another legacy from
Dartmouth that has powerfully swayed the direction of modern
computing: the almost evangelical mission to foster a more
productive and creative relationship to computing. In his 1972
book Man and the Computer,
Kemeny defends programming and playing games and other
“recreational” uses of the computer
as important, writing that such activities are relaxing and help
people to overcome their fear of computers (35). Kemeny also
describes some of the context in which BASIC programming was done
at Dartmouth: “The computation center is run in
a manner analogous to Dartmouth’s million-volume
open-stack library. Just as any student may go in and browse the
library or check out any book he wishes without asking for
permission or explaining why he wants that particular book, he may
use the computation center without asking permission or explaining
why he is running a particular program” (33). Computers
were for everyone (at least within the campus community) and for any purpose. BASIC was
the embodiment of this openness, which allowed for programs with no
obvious military, business, or scientific
purpose — programs such as 10 PRINT — to
come about.


CHR$ AND THE DOLLAR SIGN IN BASIC
In designing BASIC, Kemeny and Kurtz wanted to distinguish between
variables that held numeric values and variables that held strings
of text. They chose to have string variables and string functions
end with a “$,” so that a string
variable might be named A$ and the function that produced
one-character strings based on ASCII values was called CHR$. They
selected the dollar sign because there “were not
so many keys on a Teletype, and we needed to find one that had not
yet been used for BASIC. Of the few remaining ones, none seemed
very appropriate. Then one of us observed that $ looks like S for
string” (Kemeny and Kurtz 1985, 28).
Computers are fundamentally machines that add and multiply, so it
is a curious circumstance that the Commodore 64 keyboard, like
modern North American keyboards, has a dollar sign on it but does
not have a multiplication sign. Instead, the asterisk (*), the
typographical mark once used to indicate a footnote, is pressed
into service as the symbol for multiplication.
Why would a keyboard have a dollar sign but not a multiplication
sign? Even though interactive processing (as opposed to batch
processing with punched cards) was a novelty, teletypewriters had
been used as interfaces to computers long before the 1960s. Various
sorts of TTYs, teleprinters, or “printing
telegraphs” were used commercially as a means of
textual communication beginning in the 1910s. These
systems were based on pre-ASCII character codes that came from
telegraphy, and were used to transmit dollar amounts much more
frequently than they were used for sending mathematical equations.
Murray Code, the 1901 revision of the standard 1870 telegraph code,
included two characters that allowed “shifting” into alternate sets. A
shifted “D” would become a “$” in Murray Code.
Interestingly, the original, North American Commodore 64 keyboard
sported a pound sterling sign (£), a glyph absent from
other US computers of the time. The presence of this key no doubt
pointed to Commodore’s plans to sell its
computers in the United Kingdom, although that key had a precedent
in Murray Code, which also features a pound sterling
sign.
The dollar sign is still used in some of today’s
workhorse programming languages, such as Perl and PHP. In both of
these, it is used to indicate a variable by being placed at the
beginning, rather than the end, of the variable name. In Perl it
specifically indicates a scalar
variable, since $ looks like S for
“scalar.” Despite these varying
uses, the impact of BASIC’s role as an
entry-level language in the 1970s and 1980s was such that some
modern programmers, including one of this book’s authors, still
pronounce “$” as
“string” when reading code aloud
regardless of the character’s meaning in the
language under discussion.



It’s not surprising that
Kemeny’s liberal ideas about computers and
education played some part in his achievements as the president of
Dartmouth College, a position he served in from 1970 to 1981.
Kemeny presided over Dartmouth’s conversion to a
coeducational campus, removed the
“Indian” as the college’s mascot, and encouraged the recruitment
of minority students. On his final day as president, he gave a
commencement address that warned students, including those involved
in the recently founded conservative Dartmouth Review,
against the impulse that “tries to divide us by
setting whites against blacks, by setting Christians
against Jews, by setting men against women. And if it succeeds in dividing
us from our fellow beings, it will impose its evil will upon a
fragmented society” (Faison 1992). After leaving the
presidency of Dartmouth, he returned to full-time teaching. Kemeny
died in 1992. Thomas Kurtz continued to teach at Dartmouth long
after he worked on BASIC, directing the Computer and Information
Systems program there from 1980 to 1988.


BASIC COMES TO ThE hOME



The computer had already become more welcoming and accessible
thanks to innovations on university and college campuses, but it
wasn’t until the computer moved into the home
that the true revolution began. In popular
lore that revolution started with a single photograph of a panel of
switches and LEDs on the cover of the January 1975 issue of
Popular Electronics — the first public look at the Altair 8800 minicomputer (figure
50.2). While the history of BASIC at Dartmouth shows that personal
computing did not suddenly spring to life fully developed in 1974,
that year does mark an inflection point for home
computing.
Proclaiming in a headline that “THE HOME COMPUTER IS HERE,” that issue of Popular Electronics
gushes about the possibilities of the $395 Altair 8800 ($495 assembled, $1812 and $2271 in 2012 dollars, respectively). The
magazine claims that the computer can be used as a “sophisticated intrusion alarm
system,” an “automatic IC tester,” an “autopilot for planes,
boats, etc.,” a “time-share computer system,” a “brain for a
robot,” and a “printed matter-to-Braille converter for the blind,” among other
things, noting that “many of these applications
can be performed simultaneously” (Roberts and Yates
1975, 38). As it happened, even the applications that were within
the capabilities of the device were rather difficult to realize,
since the system by default could only be programmed in machine
language. Furthermore, unless one happened to have a Teletype or
other terminal lying around, the programming had to be done using
the toggle switches on the front panel. The home computer may have
arrived, but most hobbyists would have no effective way of
programming it. From the outset, it was clear to many that the
Altair 8800 needed a programming language that facilitated
experimentation. Popular Electronics
mentions four programming languages by way of explaining the
distinction between hardware and software (34); one of these
languages was BASIC, the language that showed the most promise to
early Altair 8800 enthusiasts.
Altair BASIC and Microsoft



There were two successful efforts to develop a BASIC interpreter
for the Altair. Their varied histories have had a lasting impact on
modern computing and modern culture. While this tale of two BASICs
is not about the best of BASIC and the worst of BASIC, it does
highlight two extremes in software development: one commercial,
closely coordinated with hardware manufacturers and highly tied to
licensing and cost structures; the other community based,
nonprofit, and “copyleft.” The BASICs that led in these directions were
Microsoft’s Altair BASIC, the official BASIC for
the platform, licensed to MITS, the Altair’s manufacturer; and
Tiny BASIC, which originated at the People’s
Computer Company or PCC. The Commodore 64’s
BASIC is directly descended from Altair BASIC, by the company whose
name was later standardized as “Microsoft.” The BASIC for this
system is — although this is not visible on the startup screen — a Microsoft product. At the same
time, the 10 PRINT program participated in a context of BASIC sharing and exploration
that was strongly influenced by the People’s
Computer Company.
The story of Microsoft BASIC, and of Microsoft, begins with Paul
Allen catching sight of the now-famous January 1975 issue of
Popular Electronics just after it hit the stands. Allen read the Altair 8800 article
and raced to show it to his friend and business partner Bill Gates,
telling him, “Well here’s our opportunity to do something with BASIC” (Wallace and
Erikson 1992, 67). The two had already had some limited business
success when Gates was still in high school, with a venture called
Traf-O-Data that produced hardware and software to count cars. They
programmed the Intel 8008 microprocessor that powered Traf-O-Data
using a simulator running on a Washington State University
mainframe.
By 1975, Gates was at Harvard University, and he and Allen were
ready for a project with broader reach. Seeing Popular Electronics,
they came up with the idea of writing BASIC for the Altair and
called Ed Roberts at MITS, asking if he would be interested in
having their BASIC for his system. Roberts said he would buy the
first version that worked (Wallace and Erikson 1992, 74). As Gates
and Allen had done when developing their Traf-O-Data system, they
initially programmed on a university’s computer
system. They used a simulator to program the Altair 8800, a
computer Gates and Allen had never seen in person. What they were
programming at this point was, of course, a modified and minimized
version of the original 1964 BASIC. Given how often the success of
personal computing is attributed to entrepreneurial and business
advances and to Microsoft in particular, it’s
remarkable that Microsoft’s first product was
developed by borrowing time on Harvard’s
computer and was (as Microsoft always acknowledged) an
implementation of a freely available programming language from
Dartmouth.
Gates and Allen devised the Altair BASIC project and did most of
the programming, but there was a third Altair BASIC programmer, a
sort of legendary “fifth Beatle.”
This was Monte Davidoff, who wrote the floating point routines.
Gates and Allen were discussing how they needed to code these when Davidoff, a student sitting with them at the table,
spoke up and said he could write them. After talking it over with
him, they enlisted him to contribute them (Wallace and Erikson
76–77). The code of this first Microsoft project
is mainly by Gates and Allen, though, with Gates listed as first
author. Comments at the beginning of the code declare,
“BILL GATES WROTE THE RUNTIME STUFF,” which he did over a period of eight weeks at
Harvard. Gates would say years later that this 4 KB BASIC
interpreter “was the coolest program I ever
wrote” (76–77).
The January 1975 issue of Popular Electronics featured the Altair 8800, which. inspired the creation of Microsoft BASIC.
[image: ]
Allen flew to visit MITS in Albuquerque, taking along a paper tape
with Altair BASIC on it. During the plane’s
descent he realized that he did not have a way to get the Altair to
read the tape and run it — a bootloader. So he
wrote one in machine language as the plane was landing. He then
went to see an actual Altair 8800 for the first time. The demo of
BASIC, written on a simulator, was a success on the machine itself,
and the interpreter was licensed by MITS. Gates and Allen moved to
New Mexico to create new versions of BASIC for the Altair and to
maintain the original code. Microsoft was booted and
running.
Altair BASIC included alterations to Dartmouth BASIC, many of which
would have made no sense on earlier time-sharing systems but which
were helpful, even crucial, on home computers. While none of
Microsoft’s changes to BASIC were critical to
the functioning of 10 PRINT, Gates and Allen did create the POKE and
PEEK statements, which have been widely used in microcomputer BASIC and in programs
found throughout this book.
POKE allows a programmer to write a value to a specific memory location. For
example, POKE 53272,23 places the value 23 into address 53272, a location in memory that
is mapped to a register of the VIC-II graphics chip. In this
case, POKE 53272,23 switches the Commodore 64 into lowercase mode. PEEK is
POKE’s complementary statement; instead of writing a value to
memory, PEEK reads the value of a given location.
Both statements are extremely powerful. Altair
BASIC — and later, the Microsoft BASIC used on the
Commodore 64 — sets no restriction on which memory
addresses can be changed with POKE.
This means, as the Altair BASIC Reference Manual
warns, “Careless use of the POKE
statement will probably cause you to
‘poke’ BASIC to death; that
is, the machine will hang, and you will have to reload BASIC and
will lose any program you had typed in” (1975, 35).
This process would have been particularly painful on microcomputers
on which BASIC was bootloaded rather than being provided a part of the system’s ROM.
It’s clear why earlier versions of BASIC did not include POKE
or PEEK equivalents. A user on a time-sharing minicomputer should not have
been able to write values directly to the microprocessor or memory;
such a privilege would have threatened the stability of the entire
shared system.
From a technical and business standpoint, Altair BASIC was not an
early oddity, but rather, a Microsoft product with a strong
relationship to the company’s later flagship
products. To see the connection, it’s important
to understand the nature of computing platforms and their
relationship to markets of different sorts.
In Invisible Engines, Evans, Hagiu, and Schmalensee (2006) introduce a theory of
two-sided software platforms. In a predominantly one-sided
market — for example, a swap meet with people
trading comics — there is only one class of
participant, a person interested in exchanging goods with other
people. A classic land-line telephone company also participates in
a one-sided market, because every customer is more or less the same
sort of participant, one who wants to make and receive calls.
However, a credit card company has two different classes of
customer: merchants, who receive payments and need terminals; and
cardholders, who have a line of credit and make
purchases.
When Atari released the Atari VCS in 1977, it was initially a
one-sided platform. Atari made the system as well as all the games
and controllers. The only participants in the market, and users of
the platform, were the players. By the early 1980s, when
Activision, Imagic, and other third-party companies had entered the
market, there was another class of participant — 
one that was not paying royalties to Atari for the privilege of
making games for their console.
Microsoft Windows is another example of a platform with at least
two sides. On one side, computers need an operating system and
desktop environment to function. This leads hardware manufacturers
such as Dell to purchase licenses to Windows and to include the
software with their systems. On the other side, computers are only
valuable if there are applications written for them. Microsoft
writes some of the applications for Windows, but third-party
developers write many others. The abundance of software has a
network effect that is positive for Microsoft: it encourages users
to stay with Windows. And, since Windows is pre-installed on many
computers, companies want to write applications for it.
Of course, Windows was not the first two-sided platform, or even
Microsoft’s first. By retaining the rights to
what IBM called PC-DOS, Microsoft had previously been able to
license MS-DOS to other companies, much as it would later sell OEM
copies of Windows to them. And before that, there are continuities
with the company’s first product line, Microsoft
BASIC. BASIC was a programming language, not an operating system,
but the presence of BASIC allowed programs to be written on a
computer and sometimes sold. There were at least two sides to BASIC
as a software platform: the computer companies, beginning with
MITS, who wanted it on their machines; and the computer hobbyists
who wanted to write (and in many cases sell) BASIC programs. At
Gates and Allen’s young company, the success of
BASIC and the essential business plan used with that family of
software products formed the basis of
Microsoft’s later success licensing MS-DOS and
Windows.

Tiny BASIC and Copyleft



Even as Microsoft was securing its future as a multisided company,
addressing both manufacturer and computer user demand, a different
version of BASIC — indeed, a different philosophy
of software altogether — was brewing in the San
Francisco Bay area. In 1975, volunteer programmers and the
nonprofit People’s Computer Company (PCC)
developed an alternative BASIC for the Altair 8800. Bob Albrecht,
who had founded “probably the
world’s first completely free, walk-in, public
computer center — People’s
Computer Center — in a storefront in Menlo Park,
California” (Swaine 2006) was one of many, along with
Paul Allen, who had seen the Popular Electronics
cover story on the MITS Altair. He discussed it with Dennis
Allison, who taught at Stanford, and Allison began to develop a
specification for a limited BASIC interpreter called Tiny BASIC. In
a collaborative hobbyist spirit, Allison’s
documents were published in three parts by Albrecht in issues of
the PCC newsletter, a serial that had been running since October
1972. At the conclusion of this series of specifications, Allison
called for programmers to send in their implementations and offered
to circulate them to anyone who sent a self-addressed, stamped
envelope.
The first interpreter written in response to this call was by Dick
Whipple and John Arnold and was developed in December 1975. To
disseminate it, Albrecht and Allison started a new serial,
initially photocopied and originally intended to just run for a few issues. This was
Dr. Dobb’s Journal of Tiny BASIC Calisthenicsand Orthodontia;
it printed the code for the interpreter in octal machine language,
ready for hobbyists to toggle in or, even better, key in on their
Teletypes. It is an understatement to call this publication a
success. By January of 1976 the journal title was made more general
by removing the explicit mention of Tiny BASIC, an editor was
hired, and Dr. Dobb’s was launched as a newsletter offering code and articles on
computing topics. In 1985, Dr. Dobb’s further participated in the culture of sharing and openness by
publishing Richard Stallman’s “GNU Manifesto,” a foundational
document of the free software movement. The journal ran as a print
periodical until 2009, with a circulation of 120,000 shortly before
that. It still exists as an online publication.
The development of Tiny BASICs continued after
Allison’s first version. The fourth Tiny BASIC,
written by Li-Chen Wang, was called Palo Alto Tiny BASIC. It, too,
was published initially in Dr. Dobb’s.
The source listing for this BASIC interpreter began:
;**************************************************************
;*
;*                TINY BASIC FOR INTEL 8080
;*                      VERSION 1.0
;*                   BY LI-CHEN WANG
;*                    10 JUNE, 1976
;*                      @COPYLEFT
;*                 ALL WRONGS RESERVED
;*

;**************************************************************
While this header does not use “copyleft” in the same sense that
free software licenses would beginning in the late 1980s, this
anticopyright notice was a jab at the closed culture of locked-up,
proprietary code. Because Wang chose to disclaim copyright and
reserve only the “wrongs” of the program, Palo Alto Tiny BASIC was able to serve as the basis for a
commercial BASIC: Level I BASIC for the TRS-80, the influential
microcomputer that came on the market in late 1978.

The Ethic vs. The Corporation



In Hackers: Heroes of the Computer Revolution,
Steven Levy describes the early history of home computing and the
development of BASICs for the Altair and its immediate successors
as a battle between an ethic of openness and the sort of corporate
powers who were “a foe of the Hacker
Ethic” (1984, 227).
This portrayal has helped to set up what is often remembered as the
first major clash between free software and the corporate will of
Micro-soft: Bill Gates’s
“Open Letter to Hobbyists” (Gates
1976a). Published at the beginning of 1976 in numerous newsletters,
including the Altair Users’ Newsletter
and that of the Homebrew Computer Club, this confrontational letter
gave Gates the opportunity to scold home computer users for the
same kind of sharing that the original BASIC at Dartmouth
encouraged. In the letter, Gates soundly declared,
“As the majority of hobbyists must be aware,
most of you steal your software.” The letter spurred
hundreds of responses, public and personal, causing the first major
controversy in home computing. Many see it as the start of
Microsoft’s history of unfair
deal-ing — and of embracing and extending, a
practice in which the company takes existing tools and ideas and
creates its own version for competitive advantage. Decades later,
in the antitrust case against Microsoft, Judge Thomas Penfield
Jackson would write that “Microsoft is a company
with an institutional disdain for both the truth and for rules of
law that lesser entities must respect.” He was hardly
the only one with this view by that point. Did
Microsoft’s rise to the height of corporate
ruthlessness begin with this letter to hobbyists?
There are a few complications to the most popular version of this
early clash, just as there would be complications in considering
Altair BASIC as completely wrongheaded and Tiny BASIC as perfect in
every way. To begin with, neither Microsoft, nor Gates, nor Allen
was the party fingered in Levy’s book as the
“foe” of the hacker ethic. That
distinction belongs to Ed Roberts, the head of MITS, who was
running a business with dozens of employees, many of whom would be
furiously working at any given hour to fulfill computer
hobbyists’ orders (and their dreams of computer
ownership). At the beginning of 1976,
“Micro-Soft” (the spelling had not
been regularized by the time of the first letter) was simply two
partners, both recent college dropouts, one a teenager and the
other only slightly older. The company had paid other people, such as BASIC contributor
Davidoff, but would not get its first official employee until April
1976.


LINE NUMBERS AND COLONS: RESPONSES TO CHANGING HARDWARE
Microsoft has used its position as the major implementor of
microcomputer BASIC to make many changes to the language, adding
and removing components that became necessary or obsolete as
hardware progressed. For example, to allow programs to be written
more compactly — an important feature given the
Altair’s switch and toggle interface, which
could literally be painful to
programmers — Microsoft’s
Altair BASIC introduced the colon (:) to place separate statements
on the same line. Used this way, the colon allowed lines such
as:
160 R=16:PRINT"HOW MANY DECKS (1-4)";
Multiple statements on the same line were not possible with
minicomputer BASICs and the ANSI standard; Kemeny and Kurtz saw the
compression of statements as potentially confusing rather than
helpful. When they released their much-revised True BASIC for home
computers in 1983, they still did not allow multistatement lines.
The colon is, however, important in 10 PRINT;
this program could not be written as a concise one-liner without
it.
Another prominent feature of 10 PRINT
is also an artifact of the hardware underlying the language. Unlike
its punch card-derived predecessors, BASIC
didn’t require programmers to put anything in
certain columns; yet there was a requirement that a number such as
10 appear at the beginning of each line. While line numbers made
branching possible by allowing GOTO
and GOSUB, BASIC did not technically need line numbers for this purpose.
Labels, such as those used in preexisting languages like assembly,
would have sufficed. The line number’s real
value is seen on a Teletype or other print terminal, or in any
environment where full-screen, nonlinear editing is not an option.
Line numbers make it easy in those cases to delete existing lines:
simply type the line number without any further instructions, and
the line disappears. To correct a single existing line, just retype
a line with the same line number. To see what code is currently on
a particular line, LIST 50
will do the trick — although if one had written
the line recently, one could also look up or literally
“scroll” back to where the line had
been printed out.
The practice of numbering program statements by multiples of five
or ten is not merely rhythmic or aesthetic (as it is in this
book’s table of contents); the insertion of new
lines in a program requires that, as an early manual puts it,
“the original line numbers not be consecutive numbers” (Dartmouth College
Computation Center 1964, 22). Numbering a program 10, 20, 30, and
so on ensured that, between every existing program statement, there
was room for nine more. It was an acknowledgment that a program is
dynamic, rather than fixed and perfect. The Commodore 64 User’s Guide
also advises that “it is good programming
practice to number lines in increments of 10 — in
case you need to insert some statements later on” (33).
While line numbers became an iconic feature of BASIC early in the
personal computing era, they also contributed to a perception among
programmers that the language is limited to simple tasks. Leaving
space to add nine new lines of code between every original line may
initially seem like plenty of flexibility, but sometimes, when
programmers have a complex problem to solve, it is not enough.
BASIC can still accommodate this situation by allowing the
programmer to use GOTO and GOSUB
in order to jump to as-of-yet unused numbers for a separate routine
and then return to the original program flow when complete.
Unfortunately, too many subroutines can result in
“spaghetti code” — so named because the flow
chart of a program becomes so confused and self-referential that
all the lines look like a plate of spaghetti, making the program
nearly unintelligible.
In 1991 Microsoft realized that the perception of BASIC as limited
to simple programs was holding the language back, and that this
perception was largely due to a feature of the language that was no
longer even necessary. Text editors that could display and allow
access to screenfuls, or windowfuls, of lines had long been
available, and line numbers were now doing more damage than good.
In QBasic, released in 1991, was a Microsoft BASIC that deprecated line numbers, encouraging the use of assembly-like text labels instead.
That 10 PRINT includes both the colon and the line
number — features that have been added and removed
from BASIC in response to hardware changes — 
signals that 10 PRINT is from a particular time and related to a specific era of
computing caught between competing input mechanisms. Its heritage
and provenance are written right into its code.



Furthermore, copyright protection for computer programs, on which
Gates based his argument, was well established by 1976. While
sharing of programs certainly happened in users’
groups and other contexts, today’s concept of
free software had not been articulated at that time. Richard
Stallman started the GNU project in 1983; he published the GNU
Manifesto and founded the Free Software Foundation in 1985, a
decade after Altair BASIC. An argument has been made that, even
though the discussions of this period have been overlooked, some of
the ideas important to the free software movement were first
publicly stated in the columns of magazines and newsletters in
response to Gates’s letter (Driscoll 2011). But
many hobbyists were not interested in free (as in freedom) software
as it is conceptualized today; rather, they were interested in (as
the editorial in the first issue of Dr. Dobbs
explained) “free and very inexpensive” software.
In the aftermath of his first letter, Gates wrote a
“Second and Final Letter,” replying to objections raised by his readers. In it, he conceded that, at
least for certain types of programs, the free sharing of code was
likely to become the norm. He also suggested that good
“compilers and interpreters” (such as Microsoft’s Altair BASIC) would enable such
shared software:
In discussing software, I don’t want to leave
out the most important aspect, vis., the exchange of those programs less complex than
interpreters or compilers that can be written by hobbyists and shared at little
or no cost. I think in the foreseeable future, literally thousands of such
programs will be available through user libraries. The availability of standardized
compilers and interpreters will have a major impact on how quickly these
libraries develop and how useful they are. (Gates 1976b)


Gates certainly had a concept of software that would allow for it
to be sold and tightly controlled by a corporation, but he was
hardly seeking to eliminate hobbyist programming and the sharing of
code. The company’s policies did run counter to
the ethic of the Homebrew Computer Club and the
People’s Computer Company in significant ways;
yet Microsoft facilitated not only the creation of new software
with its version of BASIC, but also the exchange of programs that
Gates mentioned. Through licensing deals with computer companies,
Microsoft did a great deal to bring BASIC out of the minicomputer time-sharing environment and onto
microcomputers and beyond, to early adopters and enthusiast
programmers. Microsoft signaled it was not completely at odds with
the PCC in Appendix M of the original Altair BASIC manual. It lists
“a few of the many texts that may be helpful in
learning BASIC,” all but one of which can be ordered
from the PCC, whose address is also provided. Five of the six books
are about BASIC specifically, but the manual also lists the radical
and countercultural Computer Lib/Dream Machines
by Theodore H. Nelson (1974), an edition of which Microsoft would
itself publish in 1987.
Ultimately, BASIC became what it was in 1982 thanks to the
institution of higher education where it was first developed, the
corporation that implemented and licensed it for use on home
computers (including the Commodore 64), and, significantly, the
hacker ethic of code sharing that allowed BASIC
programs — such as 10 PRINT — to
circulate freely.


COMMODORE BASIC



The ability to program a computer — to use its
general power in customized ways — was a core
selling point for many home computers including the Commodore 64.
Home computers were often positioned against videogame systems in
advertisements. Implicitly, this comparison reminded the
prospective buyer that a computer could be used to play video
games; explicitly, it pointed out that computers could be used with
business and educational software — and that they
could be programmed to do much more. This point was driven home in
the many Commodore TV ads that compared the VIC-20 to game systems,
including one in which William Shatner says
“unlike games, it has a real computer
keyboard” (Commodore Computer Club 2010).
That computers were programmable and that they specifically could
be programmed in BASIC were hardly afterthoughts in their
development or marketing. A Commodore 64 advertisement that was
aired in Australia in 1985 provides evidence that BASIC was a
central selling point (Holmes3000 2006). After the television spot
showed bikini-clad women descending a waterslide
(“♪
In a world of fun and fantasy . . . ♪”) and cut to a woman happily using a Commodore 64 in a retail store
(“♪ . . . and ever-changing views . . . ♪”), it cut once again: to a screenful of BASIC, and then to depict a
boy programming in BASIC (“♪. . . and computer terminology . . . Commodore and you!
♪”). The commercial suggests that computer programming was an obvious,
important, and fun use of a home computer.
An early print ad for the Apple II that ran in Scientific American
among other publications boasted,
“It’s the first personal computer with a fast version of BASIC — the
English-like programming language — permanently
built in. That means you can begin running your Apple II the first
evening, entering your own instructions and watching them work,
even if you’ve had no previous computer
experience.” It was very easy for home computers users
to type in or modify a BASIC program, and the fact that the
manufacturers encouraged such behavior in mass media advertising
primed users to partake of programming once
they’d purchased a machine.
At the opposite extreme were programs fixed in the ROM of
cartridges, such as the cartridges of videogame systems. They were
convenient, and they showed that such game systems had the
flexibility to work in many different ways, but hacking cartridge
code or writing one’s own programs on a
cartridge-based system was far from easy in the early 1980s. The
Commodore 64 provided the flexibility of BASIC out of the box,
but —  like the TI-99/4A, among other
computers — it also had a cartridge slot. By
offering BASIC along with the ability to plug in cartridges (many
of which were games), the Commodore 64 turned one of its Janus-like
faces to the generality and power of home computing and another to
the convenience and modularity of gaming.
The Commodore 64 BASIC on which 10 PRINT
runs is a Microsoft product and a descendant of Altair BASIC. The
first step for achieving this BASIC was creating a version for the
Commodore 64’s chip, the MOS 6502 processor. The
Altair had used the Intel 8080, which had a different instruction
set. The task of developing a version of Microsoft BASIC to work
with the MOS 6502 was undertaken in 1976 and fell mainly to Richard
Weiland. When a user types “A” in
response to the startup question “MEMORY
SIZE?”, the version of Microsoft 6520 BASIC licensed to
Ohio Scientific replies “WRITTEN BY RICHARD W.
WEILAND,” while version 1.1 for the KIM declares
“WRITTEN BY WEILAND & GATES.”
The first version of Microsoft’s 6502 BASIC that
made its way into the ROM of a shipping system, in 1977, was a
version for Commodore — not for the Commodore 64,
but for the company’s first computer, the
Personal Electronic Transactor or PET.
The BASIC included with the Commodore PET was very similar
to Commodore BASIC 2 for the Commodore CBM and the BASICs included on
the VIC-20 and Commodore 64. (The version history of Commodore
BASIC is a bit complicated, as the “COMMODORE 64
BASIC V2” that appears on the top of the screen
indicates the second release of BASIC V2.0; this version was
originally provided with a model of the PET 2001.) Other aspects of
Commodore computers, such as the PETSCII character set, are similar
across models as well. For these reasons, 10 PRINTwill
run without modification on a Commodore PET or a VIC-20. What
mainly suggests that the program should be identified with the
Commodore 64 is the presence of 10 PRINT
variants in a Commodore 64 manual, a later magazine, and other
contexts specific to the Commodore 64.
Versions of Microsoft’s 6502 BASIC were used not
only on the PET and Commodore 64 but also on competing computers:
the Apple II series and Atari’s eight-bit
computers, the Atari 400 and Atari 800. Microsoft certainly
benefited from selling the same product to multiple computer
manufacturers but didn’t manage to make the
usual licensing deal with Commodore. As the founder of Commodore,
Jack Tramiel, explained at the Computer History Museum at a
twenty-fifth anniversary event honoring the Commodore 64, Bill
Gates “came to see me. He tried to sell me
BASIC. And he told me that I don’t have to give
him any money. I only have to give him $3 per unit. And I told him
that I’m already married.” Tramiel
told Gates he would pay no more than a $25,000 flat fee for
BASIC — an offer that Micro-soft ultimately
accepted. This was a very good deal for Commodore, since about 12.5
million Commodore 64s were ultimately sold (Steil).
Features of BASIC highlighted by 10 PRINT
and which are fairly specific to the Commodore 64 version are seen
in the RND command, discussed in the Randomness chapter, and in the
PETSCII character set that CHR$ refers to, discussed in the
Commodore 64 chapter.
Before turning to the way Commodore 64 BASIC programs circulated,
it’s worth noting what the creators of Commodore
64 BASIC went on to do. Bill Gates’s career
trajectory is, of course, well known. It is indeed the case that
one of the programmers of Commodore 64 BASIC became the richest
person in the world. Paul Allen is not far behind in wealth; he
left full-time work at Microsoft in 1982. Gates and Allen are
notable philanthropists today. The other coder who contributed to
the original Altair BASIC, Monte Davidoff, did not strike it nearly
as rich but, according to an interview, was still active as a
programmer in 2001, running Linux and preferring to program in Python (Orlowski 2001).
The programmer of Microsoft’s 6502 BASIC,
Richard Weiland, a grade-school classmate of Gates and Allen,
joined Microsoft when the company was based in Albuquerque. He
worked for Microsoft until 1988 and devoted much of his time and
money from then until his death in 2006 to philanthropy. He
supported the Pride Foundation (with the largest-ever donation to
LBGT rights), Stanford University (with the largest donation that
university had ever received), the Audubon Society, and the Nature
Conservancy (Heim 2008). While the dichotomy between profit-driven
corporations and people-powered programming is not artificial, the
generosity of the people behind Commodore 64 BASIC shows that those
on the corporate side aren’t without altruistic,
community concerns.

THE CIRCULATION OF BASIC PROGRAMS



From the first years of the language, BASIC programs circulated as
ink on paper. In 1964 and for many years afterward, there was no
Web or even Internet to allow for the digital exchange of programs,
and it was often impractical to distribute software on
computer-readable media such as paper tape. From the mid-1970s
through the early 1980s, BASIC was known in print not only through
manuals and textbooks that explicitly taught programming, but also
through collections of programs that appeared in magazines and
computer club newsletters. The printed materials that remain today
reveal insights into the practices of BASIC users and the culture
that developed among them.
Programs in Print



Computer magazines often featured BASIC programs a home user could
easily key in to his or her home computer. There was the previously
mentioned Dr. Dobb’s, but also many others. For instance, Creative Computing
was a significant early magazine for microcomputer hobbyists.
Launched in 1974 before the debut of the Altair 8800,
Creative Computing was published until 1985 and spanned the era of
BASIC’s greatest growth and popularity.
As Creative Computing was nearing the end of its run, other magazines, many of them platform-specific, were just getting started.
One was the previously-mentioned RUN (1984–1992), a monthly magazine published by IDG
Communications, focused on the Commodore 64 and VIC-20. RUN is particularly noteworthy in the current discussion because a
one-line variant of 10 PRINT appeared in its pages in 1984. A German edition of
RUN was published as well, and ReRUN disks made programs in the magazine available for purchase in
machine-readable format. Another home computer magazine of this era
was Compute! (1979–1994), which began as Pet Gazette,
a 1978 magazine put together by Len Lindsay about the Commodore PET
computer. In July 1983, Compute! launched a spinoff publication, Compute!’s Gazette,
for Commodore 64 and VIC-20 owners. In the UK there were several
magazines for Commodore users, including Zzap! 64,
Commodore User, and Commodore Format — suggesting
that putting the pound sterling symbol on the Commodore keyboard
was a good move after all. Interestingly, the last of these UK
magazines did not start publishing until October 1990, well into
the twilight of the Commodore 64. Commodore Format
was not about BASIC or learning to program, however, instead
focusing on what was by 1990 nearly retro-gaming. The magazine came
with a “Powerpack” tape, offering
full games and demos for subscribers to load and run.
While magazines were ready and regular sources of BASIC programs,
many enthusiasts also discovered code in long-form books. David H.
Ahl’s influential compilation, 101 Basic Computer Games, was first published in 1973 by the Digital Equipment Corporation
(DEC). This was the first book to collect only games in BASIC. It
includes a sample run of each game and acknowledges the programmers
who contributed them. Each program’s
“computer limitations” are described
so that users understand the specific BASIC dialects and hardware
that are supported, evidence that even as early as 1973 BASIC had
drifted from its creators’ goal of a
platform-agnostic high-level language. Hand-drawn illustrations
punctuate 101 Basic Computer Games — a
rather playful presentation for a corporate publication. The
game’s titles are all abbreviated so they can
serve as filenames, which at the time were limited, on some
systems, to six characters. The abbreviations are humorously
cryptic, with ACEYDU standing for “Acey Deucy
Card Game”; AMAZIN for “Draw a Maze”; or POET for “Random Poetry
(Haiku).” In the preface, the educational value of
playing and creating games and the need for
“unguided learning” are emphasized, echoing
Kemeny’s own thoughts about the value of play on
computers.
A new edition of this book, Basic Computer Games, Microcomputer Edition,
appeared in January 1978 — reflecting BASIC’s move from timesharing minicomputers to
microcomputers. This edition’s preface begins with a dictionary definition (from an unnamed dictionary) of the
word “game.” It then provides a cursory history of sports and games from ancient times to the
modern age, emphasizing that games offer recreational breaks from
the “realities of life” and have other “important redeeming virtues.”
The programs in this book are meant to run on the gold standard of
microcomputer BASICs: MITS Altair 8K BASIC, Rev. 4.0 (ix). The
games, no longer referred to by cryptic six-character tags, are
organized by category — e.g., Educational, Number
and Letter Guessing, Sports Simulation, Gambling Casino, Card and
Board, and so on. While none of these categories would
easily accommodate 10 PRINT,
it is notable that so many of them rely upon a key feature of that
program: randomness.
Later in 1978, this compilation was published again by Workman
Publishing under the lengthy title Basic Computer Games, Microcomputer Edition. 101 Great Games to Play on Your Home Computer. By Yourself or with Others. Each Complete with Programming and Sample Run.
Its translation into German in 1982 (reprinted in German in 1983)
shows how BASIC games, thanks in this case to a
book’s large trade publisher, made their way
abroad.
The People’s Computer Company not only published
a newsletter (figure 50.3) but also offered a book collecting BASIC
games: Bob Albrecht’s large-format What to Do after You Hit Return
came out originally in 1975. This popular book underwent several
printings from different publishers. Not once did the acronym BASIC
appear on the front or back cover, perhaps indicating that the
language was so prevalent for recreational programming that it need
not be named.
Given the growing popularity of BASIC and computers among
hobbyists, it is not surprising to see books of BASIC that go
beyond games. Promising to teach a BASIC that would work
with all the various “dialects,” the 1977 Illustrating BASIC (A Simple Programming Language),
was published by no less a scholarly authority than Cambridge
University Press. In 1978 came The Little Book of BASIC Style: How to Write a Program You CanRead,
by John M. Nevison. With its allusion to the Elements of Style
by Strunk and White, this book insists that programs have human
readers and can be written with them in mind. Similar titles
include the 1978 BASIC with Style. Programming Proverbs
and the 1979 Programming for Poets. A Gentle Introduction UsingBASIC.
Lest the utilitarian function of computers become overshadowed by
these more aesthetically oriented books, there is Charles D.
Sternberg’s BASIC Computer Programs for the Home
(1980), filled with programs specifically designed to satisfy
“the practical requirements of the
home.” Should one of these programs not work on the
reader’s own machine, Sternberg encouraged their
“modification.”
[image: The People’s Computer Company (PCC) Newsletter #1 in October 1972 featured a selection of BASIC programs from My Computer Likes Me. Courtesy DigiBarn Computer Museum via the Creative Commons Attribution-Noncommercial 3.0 License.]

Figure 45-2. The People’s Computer Company (PCC) Newsletter #1 in October 1972 featured a selection of BASIC programs from My Computer Likes Me. Courtesy DigiBarn Computer Museum via the Creative Commons Attribution-Noncommercial 3.0 License.

This quick survey of BASIC books from the 1970s and early 1980s
highlights the extent to which BASIC facilitated exploration, play,
modification, and learning. It also reveals the nature of the home
computing movement at the time, which emphasized sharing and
learning from others, often through the medium of print. While
programs in machine language occasionally circulated in print,
published BASIC programs such as 10 PRINT
were a different beast altogether. BASIC was legible code. It could
be read straight from the page and some sense of the
program’s nature was evident before the program
was ever even executed. Furthermore, as a user typed in a program,
he or she could easily alter it, sometimes mistakenly, yet often
with purpose. Sometimes the magazines and books had typos
themselves or didn’t work with a particular reader’s dialect of BASIC, and modifying the
program — debugging it — became essential. The transmission of BASIC programs in print
wasn’t a flawless, smooth system, but it did
encourage engagement with code, an awareness of how code
functioned, and a realization that code could be revised and
reworked, the raw material of a programmer’s
vision.

BASIC in Human Memory



Not so long ago, software was primarily transmitted on physical
media, such as cassette tapes, floppy disks, and CD-ROMs. The
notion that programs would routinely be published in print and
typed in by users seems alien now. But there is an even stranger
way that programs, particularly short ones such as BASIC one-liners
could make their way from computer to computer and from person to
person: as memorized pieces of code, like a software virus whose
host is a human rather than a machine.
The dream of total recall of a computer program appears in science
fiction. In Cory Doctorow’s short story “0wnz0red,” a programmer named
Murray spirals downward in terms of his life and his code quality
after the apparent death of his only friend (Doctorow 2002). When this friend
returns, having actually hacked his own body and mind into
near-perfection, Murray attains similarly superhuman capabilities.
Among these is the ability to precisely remember large amounts of
text, including technical documentation of code, which
“he closed his eyes and recalled, with perfect
clarity.” Murray’s powers of recall
even extend beyond human language. As the story ends, Murray
“had the laptop open and began to rekey the
entire codebase, the eidetic rush of perfect memory dispelled all
his nervousness, leaving him cool and calm as the sun set over the
Mission.”
In Doctorow’s story, the ability to memorize a
large program is a superpower. At the same time, the
story’s treatment of the human body and mind as
machines that can be mastered by a programmer and owned (or even
0wnz0red) by an adversary is consistent with the idea that
memorizing code is enslaving one mind’s to the
machine, treating it as a storage peripheral. For many programmers,
however, memorizing one-liners (not an entire massive codebase) is
both possible and useful — and pleasing, much as
memorizing a poem might be. Such memorization would hardly seem
strange in the context of what N. Katherine Hayles (2005) calls the
“legacy systems,” speech and
writing, out of which code evolves (as developed in her chapter
“Speech, Writing Code: Three
Worldviews”).
In the case of home computing in the early 1980s, it could be
advantageous for someone to memorize a one-liner or a handful of
short programs. A memorized one-liner could be typed into a
friend’s computer, initiating a kind of two-way
cultural economy; in exchange for sharing a particularly
interesting or visually affecting program, one earned prestige, or
street cred, a currency a teenager in the early 1980s would surely
appreciate. In the late 1970s and early 1980s, many of these short
programs worth memorizing were of course in BASIC. (See the remark
One-Liners for several examples.) And because programmers typically
had to memorize certain BASIC statements anyway, such as
? CHR$(147) (which
clears the screen), it was not much of a leap to memorize a program
that contained two statements in that language, such as
10 PRINT CHR$(205.5+RND(1)); : GOTO 10.
In addition to being able to show off and seem elite, there are
some strictly utilitarian reasons to memorize a short program. For
example, Perl is used for a wide variety of text-processing tasks;
many who program in it find it useful to write, recall, or adapt
one-line programs that work on the command line. For instance, to
convert a file dosfile.txt
with DOS-style line endings to Unix format, a common task for many
programmers, the carriage returns (indicated \r)
must be removed. This can be accomplished with the command
perl -p -i -e’s/\r\n/\n/g' dosfile. txt
which includes a very short program (between quotes) to perform the
needed substitution. With a few changes, this code can be adapted
to replace one word with another, for instance, substituting
“Commodore” for every occurrence of
“Atari”: perl -p -i -e's/Atari/Commodore/g' manuscript.txt.


STUDIES OF PROGRAM MEMORIZATION
In Doctorow’s story, Murray finds it easier to
remember pages of code than a string of random characters, an idea
supported by experimental research. In an effort to better
understand how people comprehend computer
programs — which has ramifications for programmer
efficiency — scientists began studying program
memorization in the mid-1970s. In 1976 Ben Shneiderman, referring
to the cognitive science literature on remembering sentences,
reported a statistically significant difference between subjects of
different ability levels attempting to memorize a FORTRAN program
and a series of valid statements in scrambled order,
“leading us to the conclusion that the structure
of a program facilitates comprehension and
memorization” (1976, 127).
Ruven Brooks published a more elaborate theory of program
comprehension in 1983; 10 PRINT shows some ways in which this theory is not generally applicable. In
Brooks’s theory, a programmer reconstructs knowledge about the real-world domains that the program models,
developing an initially underspecified hypothesis and refining and
elaborating it “based on information extracted from the program text and other documentation” (1983,
543). Brooks posited the useful idea that certain lines were
“beacons,” indicating key program structures and operations (548). But his theory is otherwise
difficult to apply to 10 PRINT. Brooks lists seven internal and five external
“indicators for the meaning of a program,” including “Indentation or
pretty-printing” and “Flowcharts” (551). None are present
in 10 PRINT. More fundamentally, Brooks’s model is meant for
programs that simulate recognizable business processes, not
computer programs in general. In fact, Brooks’s
model cannot directly apply to any creative program that lacks a
real-world domain.
Brooks’s concept of beacons was revisited in
another memorization study by Susan Widenbeck. In this 1986 study,
Widenbeck found that beacon lines were recalled more often by
experienced programmers, presumably because they know what to look
for. Widenbeck also noted, “Memorizing a program
is a very unusual programming task, and it is possible that it
changed the subjects’ normal program
comprehension strategies and procedures” (1986, 705).
Interestingly, given the contemporary mantra that
“code is poetry,” Widenbeck found
that program memorization was not at all like the memorization of
text: “If subjects were taking a strictly
linear, or text-reading, approach to understanding the program, we
would expect the lines near the beginning of the program to be
better remembered . . . this was not the case” (707). At the same time, Widenbeck made
analogies to the reading of texts in describing how her subjects
read programs: “Using beacons to understand a
program seems to be something like skimming an English text. They
help to figure out the general, high-level function, but they do
not contribute to a detailed understanding of the code”
(708).
Shneiderman’s early acknowledgement that
programs can be memorized is significant; his result, furthermore,
shows that the memorization of programs relates to the memorization
of language in some important ways (Shneiderman 1976). But there
are differences between this study’s perspective
and the consideration of how BASIC one-liners are memorized.
Memorization was used as a barometer of comprehension, the real
focus of this research. Although it seems evident from these
studies that memorization and comprehension are deeply connected,
memorization is nevertheless being considered along the way to
understanding something else. Shneiderman’s
study is about the short-term memorization of programs of about
twenty lines, assigned as a task. Because short-term memory is the
concern, Shneiderman cites Miller’s famous paper
on the topic, “The magical Number Seven, Plus or
Minus Two” (Miller 1996) and discusses how his results
may be consistent with the ones in that paper.
10 PRINT represents a category of programs that were historically memorized but that
existing theories of program memorization, formulated for longer
programs that model business processes, do not cover. The
memorization of BASIC one-liners was rather long-term, done for
fun, and of course involved very short programs. This type of
memorization has certain things in common with the tasks done in
these memorization studies, but it may also relate to the way
people memorize jokes, proverbs, and other oral texts. These
studies do at least show how people can remember key statements
(beacons) and the high-level workings of a program without
memorizing it character by character. Also, the appearance of
program variants that work identically but are written differently
is consistent with studies on and theories of program
memorization.



Programmers who use such Perl one-liners do not seem to remember
them in exactly the way one memorizes lines from a play or a song.
They would generally understand how the substitution operator
(s///) functions and how command-line flags to Perl work. In other words
it is knowing Perl, not just the memorization of a string of
symbols, that is important to most uses of Perl one-liners. But the
phrase “Perl pie” (a mnemonic for perl -p-i -e)
does help some to quickly recall which command-line flags are
needed in this case, and one-liners are at times as much recalled
as figured out and programmed. Many common one-liners are not
programmed “from scratch” each time they are used.
This type of non-rote memorization is the sort that BASIC
programmers also employed in bringing 10 PRINT
from one computer to another as they showed off its output.
Remembering code, like having it printed with the occasional typo,
was a “lossy” way to transmit programs. This didn’t have purely negative
effects, though. Instead of the perfect but opaque way of
transferring files via disk or download, the recall and reading of
programs left a space for the programmer to work and play. If the
recalled version of the program didn’t work
correctly, the programmer could think about how to change it. If it
did work well, the programmer still might think to change it, to
see what else the program could do. The wiring of these printed and
memorized programs was sometimes messed up, but they were not
sealed from view in a closed black box.


LATE BASIC



The Commodore 64, Apple II, TRS-80, and other microcomputers of the
late 1970s and early 1980s featured BASIC in its heyday. Even
though Kemeny and Kurtz focused on minicomputer BASIC, it was
during this phase of BASIC’s run that the language truly fulfilled
many of their goals: ease of use, distribution to millions of
users, and availability on a wide variety of platforms. Since that
time, the use of BASIC has declined thanks to changing technology,
new standards, and a reputation (deserved or not) for encouraging
low-quality code among programmers. Modern programming environments
are indebted to BASIC in a variety of ways, however.
The most direct lineage continues Microsoft’s
history of building tools to support the BASIC language. Compilers
and development environments supporting BASIC, including QuickBasic
and QBasic, shipped with every Microsoft operating system until
Windows 2000 finally broke the chain by moving away from an MS-DOS
base. In 1991 Microsoft reenvisioned BASIC to produce Visual Basic,
a language that was intended to fulfill the ease of use and rapid
development capabilities of BASIC under the new paradigm of
window-based interfaces. Visual Basic used some syntax similar to
BASIC but was designed for use with graphical development tools and
did not derive directly from earlier microcomputer BASICs. Visual
Basic itself was followed ten years later by Visual Basic .NET, a
language that again breaks from its predecessor in fundamental ways
but retains the goal of being the easy-to-learn, quick-to-use
introductory programming language on the Microsoft platform. As of
2012, Visual Basic is the seventh most popular programming language
in the world and Visual Basic .NET is twenty-fourth (TIOBE Software
BV 2012).
On the less professional end, Microsoft’s most
recent BASIC probably has the strongest relationship to
10 PRINT and to how that program was used, modified, shared, and explored.
This version of the language is Microsoft Small BASIC, released in
2008 and available free of charge. This is a Microsoft .NET
language that is clearly aimed at students and other beginners. It
incorporates turtle graphics concepts from LOGO, inviting play and
exploration with graphics and GUI elements as well as text. To
accompany this language, there is even a Small BASIC edition of
David Ahl’s Basic Computer Games
(Kidware Software 2011).
BASIC has continued to be relevant in particular domains. There are
several BASICs, or BASIC-derived languages, created specifically
for game development and still in active development and use. These
include Blitz BASIC (and successor languages), DarkBASIC, and
GLBasic. Those interested in physical computing projects can use a
microcontroller, the BASIC Stamp, versions of which have been
manufactured by Parallax, Inc. since 1992. This system is powered by a nine-volt battery; hobbyists can
program it in a variant language called PBASIC. A less direct
descendant is the language used to program calculators from Texas
Instruments in the 1990s and 2000s. It has been given the
unofficial name of TI-BASIC by its programming community because,
as in the heyday of BASIC, it is a relatively simple interpreted
language that ships with and controls a standalone
device.
Other successors have continued to migrate either
BASIC’s principles or syntax to an ever-widening
array of environments. Like Microsoft’s Visual
Basic, True BASIC updated the BASIC language to support graphical
environments. Unlike Microsoft’s re-envisioning,
however, True BASIC was created by Kemeny and Kurtz themselves and
has remained close to both the original syntax of Dartmouth BASIC
and the principle of device independence, with compilers available
for several operating systems.
A more radical interpretation of BASIC’s legacy
might include languages that have taken over its role of inviting
ordinary users to become programmers and creators. Following the
release of graphical web browsers like NCSA Mosaic, Netscape
Navigator, and Microsoft Internet Explorer between 1993 and 1995,
that role might be assigned to HTML. Though HTML is a markup
language used for formatting, not a programming language used for
data processing and flow control, it copied
BASIC’s template of simplicity, similarity to
natural language, device independence, and transparency to become
many users’ first introduction to manipulating
code. Browsers have traditionally contained a
“view source” command that shows the
markup behind the page being displayed, making it as accessible as
if it were printed in a magazine. This markup language also was
similar to BASIC in that it led users on to more powerful languages
like Javascript, Perl, and PHP as those users sought to create more
interactivity than static HTML could provide.
BASIC’s role as a language that introduced users
to programming by necessity in the 1980s is now being fulfilled by
languages designed specifically for education, some of which are so
abstracted from traditional programming practices that they use
entirely different metaphors. Scratch, an environment developed by
the MIT Media Lab in 2006 whose creators cite 1980s-era BASIC as a
predecessor (Resnick et al. 2009, 62), does not even use text as
the basic unit; instead, programs are assembled by dragging and
dropping puzzle-piece graphics that fit together to build
functionality. Though the appearances and mechanisms are quite different,
Scratch uses the same underlying logic and concepts as any other
programming language, so that students who use it can apply what
they learn to other languages.


A PERSONAL MEMORY OF 10 PRINT
When one of this book’s authors, Nick Montfort,
first wrote about a similarly functioning program, he presented
this variant: 10 PRINT CHR$(109+RND(1)*2); : GOTO 10.
That is the program discussed very briefly in the article
“Obfuscated Code” in Software Studies: A Lexicon,
and is the same version of the program that Montfort presented to
Mark Marino’s online Critical Code Studies Workshop in 2010, where it sparked the discussion that led to this
book.
This program is a different sequence of characters, but it does the
same thing as the 10 PRINT  that forms this book’s title, for two reasons:
first, 205 and 206 are mapped to the same characters as 109 and
110; second, adding a random number between 0 and 2 does the same
thing, due to rounding, as adding .5 and then also adding a random
number between 0 and 1. The version used in the title of this book
is based on (although not identical to) two early print sources for
the program, the three-line program in the Commodore 64 User’s Guide
and the one-line version in RUN magazine. No print sources from the 1980s have been located that use
RND(1)*2 or that use character codes 109 and 110 rather than 205 and
206.
Why did Montfort initially bring up this “corrupt” version of the program?
Simply because he reconstructed 10 PRINT from memory and looked at a chart of PETSCII character values when
he was doing so. Since 109 and 110 are lower numerically and closer
to the values for the characters A–Z, he noticed
them first on the chart and used those values.
The discussion of this program throughout this book is based on the
early print versions. The version of the program that started the
discussion, however, came from memory.



Because BASIC was a hit at a unique time in the history of
computing — when microcomputers were becoming
mainstream but before executable software distribution became
widespread — there may never be another language
quite like it. The principles behind BASIC remain strong, though, and continue to make programming languages easier, more
transparent, and more freely distributed — all of which continue to encourage new programmers to take the plunge and
old programmers to experiment with new ideas.

50. REM A PORT TO THE ATARI VCS



Alongside the general purpose home computers launched in
1977 — the TRS-80, the Apple II, and the Commodore
PET — was another computer, one that was hugely
successful but that most people do not recognize as a computer.
This was a videogame console, the Atari Video Computer System
(VCS), which later came to be known as the Atari 2600. Unlike the
other computers, the Atari VCS was built
specifically to play videogames. It was also designed to be far
less expensive: the VCS was priced at $199, while the original
Apple II cost an astounding $1,298.
Due to its intended use, the requirement that the system sell for a
low price, and the high costs of silicon components, the Atari VCS
was designed in a very unusual way. Like the Apple II and the
Commodore 64, the Atari VCS used a version of the inexpensive MOS
Technology 6502 microprocessor. But in order to create moving
images and sounds on an ordinary CRT television, engineers Joe
Decuir and Jay Miner designed a custom graphics and sound chip
called the Television Interface Adapter (TIA). The TIA supported
five “high resolution” movable objects: two player sprites (movable objects that can be created
once and then moved around freely), two missiles (one for each
player), and a ball. These were exactly the right kind of movable
graphics needed for the games first envisioned for the
VCS — home versions of popular Atari arcade games
including Pong and Tank.
The TIA also enabled a low-resolution playfield and a changeable
background color, along with a variety of methods to vary the
appearance of each of these objects. To save money, the TIA was
paired with a cheaper variant of the 6502 and 128 bytes of RAM, an
incredibly modest amount of memory.
Unlike the Apple II and the PET, the Atari had no on-board ROM and
no operating system, and only a fraction of the RAM of those other
1977 computers. As a result, Atari programmers had to write code
that manipulated the TIA’s registers not merely
on a screen-by-screen basis, but on every single scanline of the television display. The
result is one of history’s most unusual methods
of producing computer graphics (Montfort and Bogost 2009,
28–30). The launch titles for the Atari VCS used
this system in a fairly straightforward way (see figure 55.1),
while later titles exploited it to produce quite different
effects.
[image: These screen captures from Combat (top) and Air-Sea Battle (below) show the visual quality of Atari VCS games.]

Figure 50-1. These screen captures from Combat  (top) and Air-Sea Battle (below) show the visual quality of Atari VCS games.

While a number of remarkable games were designed for the Atari VCS over its lifetime, the constraints of the system make it a
particularly difficult platform from the programmer’s perspective. Consider the
challenges of porting 10 PRINT to the Atari VCS:
	
The Atari does not have predefined character bitmaps, grids of
pixels to represent each glyph, as the Commodore 64 does, making it
necessary to create the patterns corresponding to the diagonal
characters from scratch.

	
The TIA supports only two high-resolution sprites for on-screen
display (the missiles and ball are mere dots, a pixel each).
Somehow, the Atari has to be made to produce a large, changing
pattern out of just these two 8-bit graphics registers.

	
The Atari has no concept of a row-and-column screen display like
those found in minicomputer terminals and PCs. It was designed to
play simple videogames, not to display text and numbers. As a
result, the gridded layout that 1 0PRINT enjoys “for free,” thanks to the Commodore
64’s way of displaying text, must be laboriously
simulated on the Atari VCS.

	
Once the previous hurdles are overcome, the Atari sports far less
memory than the Commodore 64. The Commodore can hold all those
display character references in memory because it has the room to
do so, with 512 times as much storage as the Atari. Even if the
Atari could be made to display enough high-resolution diagonal
characters per line or per screen, the program would have to store
references to those simulated characters so that each frame of the
display would appear consistent with the preceding one.



Designing a port of 10 PRINT for the Atari VCS is so quixotic that it might not seem to be worth
even trying. Yet just as 10 PRINT reveals much about BASIC and the Commodore 64, so too can a study
of a seemingly impossible port on an incompatible platform reveal
deeper levels to 10 PRINT. Figure 55.2 shows is the closest approximation of 10 PRINT
that has been achieved on the Atari VCS, the output of a port written for this book.
CODING THE CHARACTERS



The matter of simulating PETSCII characters in the
Atari’s eight-bit graphics registers turns out
to be the least troublesome challenge of the port. With the
Commodore 64, graphical patterns that produce PETSCII characters
are stored in ROM, and references in BASIC like CHR$(205)
look up and retrieve the corresponding data for on-screen display, in a process
all but invisible to the BASIC user. With the Atari, which has no
ROM or built-in characters, it’s necessary to
“draw” the needed characters by
defining a data table in the Atari’s
cartridge-based ROM. For example, the following data could be
defined:
Diagonal
    .byte #%11000000
    .byte #%00110000
    .byte #%00001100
    .byte #%00000011
[image: Screen capture from an Atari VCS port of 10 PRINT.]

Figure 50-2. Screen capture from an Atari VCS port of 10 PRINT.

This binary data describes a left-leaning diagonal line, which
would appear colored on screen wherever each bit of each byte of
the bitmap is on:
[image: image with no caption]

This character looks satisfactory, but changes are necessary to eke
out a credible rendition of 10 PRINT on the Atari VCS. To understand why, it’s
important to consider the second and third challenges that were
mentioned, the ones that are also the most troublesome.
The fact that TIA has only two 8-bit registers for displaying
sprite graphics may come as a surprise to anyone who has played
early Atari games, since many games appear to have more than two
sprites on the screen at once. For example, Air-Sea Battle,
one of the console’s launch titles, depicts two
antiaircraft guns at the bottom of the screen aimed up at seven
rows of aeronautic enemies, each of which moves horizontally
(figure 55.1). How is this possible?
The answer is strange but straightforward. It is typical to think
of a computer display as a two-dimensional surface, like a painting
or a photograph. Computers usually provide a block of video memory
capable of storing enough information to create an entire
screen’s worth of display material. Typically
the program resets this data during the brief moment before the 192
horizontal lines of a NTSC television screen are rescanned, a
moment called the vertical blank. But the Atari has only 128 bytes
of RAM total, making it impossible to set up a whole
screen’s worth of information at a
time.
Instead, the Atari programmer sets up the display on a horizontal
scanline-by-scanline basis, interfacing with the TIA to change its
settings in the brief time between individual
scanlines — a moment called horizontal blank. Once
a particular line or group of lines is complete, the programmer can
“reuse” the sprite registers later
in the same screen, for a different purpose. The technique happens
so fast, especially with the lingering glow of the television
screen, that the reused sprites appear simultaneously, albeit with
some flicker. This is exactly how the final 10 PRINT
port creates more than two “diagonal” graphics on the
Atari’s screen.
But games like Air-Sea Battle
still only display one or two sprites on a single
line — precisely because the TIA can display at
most two player sprites. 10 PRINT
requires more than just two diagonals per row to look anything like
a maze. The Commodore 64 screen can display forty columns of text;
even half that number might be sufficient to give the sense of a
maze, as evidenced by the VIC-20 version of 10 PRINT,
which runs on the VIC-20’s twenty-two-column
display and is discussed in the next chapter.
The two-sprite limitation leads to the third challenge that was
stated earlier: how to approximate the row-and-column display of the
Commodore 64. Sprites may be reused on different horizontal sections of the
television screen, which is helpful, but some way to display more
than two columns worth of diagonals per row is needed. Three
programming techniques, ranging from simple to complex, are
required to produce an approximation of 10 PRINT’s
rows and columns of maze walls.

BUILDING THE WALLS



The simplest technique involves adjusting the sprite graphics to
include two diagonals in eight bits of space rather than just one,
each using one nybble (half-byte, or four bits). For example, this
defines two left-leaning lines that are one pixel thick:
Diagonals
    .byte #%10001000
    .byte #%01000100
    .byte #%00100010
    .byte #%00010001
In working this way, there are four necessary permutations of
two-line patterns to be encoded:
[image: image with no caption]

It’s both easier and more efficient to store all
four permutations as static data on the cartridge ROM than to try
to construct them in RAM out of single diagonals, each one stores
in half a byte — one-nybble diagonals.
This technique doubles the number of apparent diagonals per row,
but with two sprites this still means only four
diagonals — hardly a mazeworthy number. A second
technique can be applied to triple that number, turning the
individual diagonals into the walls of a maze.
The TIA provides a way to alter the appearance of each of the
sprites automatically. These alterations include stretching the
sprite to two times or four times its normal width, or doubling or
tripling the sprite at different distances apart. In the VCS launch
title Combat, many of the cartridge’s plane game variants are
accomplished simply by changing these settings for each
player.
Stretching and multiplying the sprites is accomplished by writing
specific values into special registers on the TIA chip called the
Number-Size registers. By setting both registers to
“three copies, closely spaced,” it is possible to get six total sprites to appear on a single line of
the display. Given that each sprite contains two diagonals,
that’s already twelve total simulated PETSCII
characters per row. But, two problems remain: positioning and
repetition.

COVERING THE SCREEN



To make a computer game of the sort normally played on the Atari, a
programmer might expect to be able to position a sprite on a
Cartesian coordinate system at a particular (x, y) position. As
described earlier, the Atari doesn’t give the
programmer access to such a two-dimensional memory space, meaning
there’s no particular location where a sprite
might appear on the screen. That said, the Atari does have
something like a vertical axis; the programmer can count horizontal
scanlines and choose to start or continue a sprite on a particular
one.
To position an object horizontally, the programmer must manually
“reset” the position of the object in question by strobing a register on the TIA. When any value is
written into these registers (named RESP0 and RESP1 for the two
player sprites), the TIA sets the starting horizontal position of
that object at that point in the scanline. To accomplish this
strange task, the programmer has to count the number of
microprocessor cycles that will have passed before the
television’s electron gun has reached the
desired position on the screen. Called “racing
the beam” by Atari programmers, this technique is relatively straightforward and can be
used to position the two sprites next to one another, creating a
sequence of six sets of two diagonals each.
[image: Identical copies of the diagonal pattern provide regularity rather than randomness.]

Figure 50-3. Identical copies of the diagonal pattern provide regularity rather than randomness.

The problem of repetition is more complex. When the
TIA’s number-size registers are set to triple a
sprite, the result looks like three identical copies of the same
pattern — whatever eight-bit value had been set in
the sprite graphics register at the time the sprite was rendered to
the screen. The resulting effect will be three identical copies of
one diagonal pattern, followed by three identical copies of another
diagonal pattern. This visual regularity (figure 55.3) is a serious
problem, since the maze of 10 PRINT
is so strongly characterized by its apparent randomness.
It’s possible to overcome the visual repetition
in the process of increasing the number of columns of sprites (and
therefore diagonal lines) visible on a single row. Doing so
involves taking advantage of an obscure behavior in the
TIA.
When a sprite’s number-size is set to double or
triple, the TIA keeps an internal count of how many copies it has
drawn. When the RESP0 or RESP1 is strobed, that value is reset. If
that strobe occurs after the first copy is drawn but before the
second has begun, the TIA’s sprite counter is
reset and it will start over, as if it hadn’t
yet drawn any copies of the sprites. By repeatedly strobing RESP0
and RESP1 in sequence, it is possible to produce a tight, interleaved grid of the sprites. By performing this
trick over and over again, it’s possible to easily produce a grid twelve sprites across.
[image: The Atari Television Interface Adapter wraps the characters around the screen. As this image shows, this is a problem for a 10 PRINT port.]

Figure 50-4. The Atari Television Interface Adapter wraps the characters around the screen. As this image shows, this is a problem for a 10 PRINT port.

[image: At this stage of the software development a convincing maze is generated, but the graphics are repeated and too regular in comparison to the original.]

Figure 50-5. At this stage of the software development a convincing maze is generated, but the graphics are repeated and too regular in comparison to the original.

This technique has the additional benefit of reducing the
appearance of repetition, as two different sprite patterns can be
interleaved. While a repeated pattern is still visible,
it’s not as obvious, and there are additional
techniques available to further reduce the repetition.
The obstacle at this point, however, is that the screen has been
set up to render twelve columns of alternating sets of sprites,
each capable of displaying one of the four patterns of diagonals.
But those twelve columns don’t fill the whole
screen. Centering them in the middle of the screen to mimic the
borders of the Commodore 64 display creates a new problem: by the
time the final sprite reset strobes have taken place, the maze
“characters” are so far to the right
side of the screen that they begin to overlap and wrap around on
the borders (figure 55.4). This happens because the TIA
automatically wraps sprites around the sides of the screen, a
valuable technique for single-screen games like Asteroids
but one that is of little use for a visual pattern partially
defined by its borders.

BOUNDING THE MAZE



Luckily, low-resolution playfield graphics can hide the characters
wrapping around the screen. Setting another bit on a TIA register
will place the play-field in front of the sprites rather than
behind it. This almost, but not quite, solves the problem. Timing
the reset strobes just right leaves the twelve columns of sprites
off center, so a small area of messy sprite junk is left at the
right side of the pattern. The solution is the ball. Even though
the name “ball” suggests a rounded image, to the TIA the “ball” is
simply a square object of a single pixel that can be turned on or
off. Turned on and positioned correctly, the ball will cover the
offending sprite residue.
With all that work done, the fourth challenge remains: storing the
diagonal pattern variation in what remains of the 128 bytes of RAM
and loading the right data for each row of simulated PETSCII
characters. Surprisingly, this is the least troubling task of all,
although it does require more work than would be necessary on the
Commodore 64. First it’s necessary to write a
random number-generation routine, since that function
isn’t provided in hardware on the machine. The
next step is to write a routine that
will run the random number routine and use it to choose sets of
diagonal bitmap data to use in each row of the visible display.
This could be a lot of data, but it’s not
necessary to store the bitmaps themselves, just the sixteen-bit
addresses of the ROM locations where they can be found. As it turns
out, the program only requires eleven bytes of RAM to run
everything else, leaving enough room in RAM to store twenty-nine
rows worth of bit-map data pointers for each of the two
sprites.
There is an unexpected consequence to this randomization approach.
The Atari’s random number generator has to be
seeded somehow. It could be given a fixed seed, but in order to
ensure that different seeds are chosen (resulting in different
mazes), the program starts with a blank screen and increments a
counter each frame. The user starts the program by depressing the
console’s RESET switch, at which time the frame
counter is put to use as a random number seed. Every subsequent
flick of the Reset switch will reset the seed and the diagonal
graphics pointer data, resulting in a different maze. The result
looks a great deal like the output of 10 PRINT — it’s
clearly identifiable as some sort of port of the program (figure
55.5). It’s even possible to make the rows
scroll to mimic the Commodore 64’s screen
buffer, using a byte of RAM to store a memory offset location for
the rows of bitmap data pointers.
But notice the horizontal symmetry of the upper part of the
maze — the six diamonds spaced evenly across the
top. This symmetry gives lie to the supposed randomness of the
maze. It occurs because the same sprite data is used across the
entire line of each row of the pattern. Recycling sprite data is
necessary because the sprite reset strobing technique occurs so
rapidly that it’s impossible to alter the sprite
graphics in between them. There’s yet one more
programming trick invented by Atari 2600 game designers that proves
helpful here: flicker. Flicker is a common technique used on the
Atari to give the player the impression that more objects appear on
screen than are technically possible. It’s a
simple solution: when more than two objects need to seem to appear
on a single scanline, draw some of them on one frame and the rest
on another frame. The television screen is refreshed at 60Hz, so
the result appears as a light flickering effect, like a ghost
image. The result can be distracting or even disorienting,
particularly when (as is not the case here) the objects are also
moving.
The apparent regularity of the VCS port of 10 PRINTcan
be reduced by deploying the flicker technique. On odd frames,
render the first six columns with one set of diagonal patterns; on even frames, render the
second six with another set of patterns. To do this,
it’s necessary to duplicate the loop that
renders the screen and send the program to the correct one. Even
this seemingly simple task proves difficult, since
“turning off” half the pattern is
not as easy as it sounds. It requires loading the
processor’s accumulator with the value zero and
setting the two sprite graphics registers to that value at exactly
the right time, before the TIA starts to render the next one. The
result is convincing, even if it still doesn’t
look as random as the Commodore 64 original.
The technique used here is only one possible way to
reproduce 10 PRINT; other methods might allow for a more random display. For example, a
common technique used in Atari games was a fairly complex routine
for a six-digit score. By taking advantage of a setting called
vertical delay, it’s possible to push one sprite
graphics value into the other by writing to the opposite register.
This technique can produce six unique, closely spaced,
high-resolution graphics. By combining this technique with the
screen flickering approach discussed earlier, it might be possible
to get a maze without any apparent repetition; but the careful
cycle timing required to generate these patterns in exactly the
correct place on the screen would also disrupt the evenness of the
resulting maze. Violating the expected grid layout even slightly
might make the “maze” look less
mazelike.
The difficulty of creating the 10 PRINT pattern on the Atari VCS is a reminder that computers with similar
components from similar eras were designed to do very different
things. 10 PRINT depends on the Commodore 64’s ability to render
text in a line and screen buffer. Even though such abilities are
fundamental to computers of the 1970s and 1980s, the Atari VCS was
not designed with that usage in mind. The BASIC code
10 PRINT CHR$(205.5+RND(1)); : GOTO 10
is defined with text of 38 bytes; as is described in the next
chapter, an assembly version of the program can be accomplished in
less space. But the simplest version of the program on the Atari
VCS requires 360 bytes, largely because the program has to perform
“from scratch” so many functions that in the Commodore 64 are part of the ROM.
The very idea of creating a program like 10 PRINT
depends on aspects of the platform and the
platform’s facility for such a program — the presence of BASIC and
RND in ROM, the existence of PETSCII, the cultural context of shared
programming techniques, and of course the ability to program the computer in the first place, something owners of an
Atari 2600 did not truly have. Reimplementing the program on the
Atari VCS, a platform both contemporaneous with the Commodore 64
and highly incompatible with the program that is this
book’s subject, helps to show all of the things
the Commodore 64 programmer takes for granted. If the Commodore 64
programmer had to go to these lengths to produce the output
of 10 PRINT — from writing a random number generation routine to coercing a
line-buffered display with two high-resolution objects to produce a
two-dimensional grid of graphics — it’s possible the
program would never have been written.

55. THE COMMODORE 64



[image: The Commodore 64 computer was released in 1982 as a followup to the Commodore VIC-20. As the name signals, it had sixty-four kilobytes of memory. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.]

Figure 55-1. The Commodore 64 computer was released in 1982 as a followup to the Commodore VIC-20. As the name signals, it had sixty-four kilobytes of memory. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.

[image: image with no caption]

The Commodore 64 (see figure 60.1) has been hailed by Guinness World Records
as the best-selling single model of computer ever. People
associated with Commodore have estimated, officially and
unofficially, that 22 million or 17 million units were sold. A
detailed study of Commodore 64 serial numbers has provided a better
estimate, that 12.5 million Commodore 64s were sold (Steil 2011),
which is still enough to earn the computer this
distinction.
Although production ended in 1994, this computer system remains
functioning and part of the popular consciousness in many ways.
VICE and many other emulators allow users to start up software
editions of the Commodore 64 and to run software for that system on
modern computers, which is the way most people now encounter
Commodore 64 software. In 2004 Jeri Ellsworth’s
C64 Direct-to-TV — a single-chip implementation of
the Commodore 64, packed into a joystick along with thirty
games —  brought at least part of the Commodore
experience to new users. And, in 2011, a company necro-branded with
the name Commodore USA announced that they would be making new
all-in-one PCs in a case (and with a keyboard) that is visually
almost identical to that of the original Commodore 64
(Olivarez-Giles 2011).
The original Commodore 64 computer has particular
features — the PETSCII character set (figure
60.2), built-in BASIC, and the specific appearance of the
screen — that determine how 10 PRINT runs. At the
same time, it was one computer among many during the early 1980s
that brought forth this significant era of personal computing and,
perhaps more novel, home computing.
HOME COMPUTING BEYOND THE HOBBYIST



In the early 1980s, computers moved beyond the exclusive domain of
hackers and hobbyists and into the home, a transition led by Apple,
Radio Shack, and Commodore. In October 1984, 8.2 percent of all
U.S. households reported owning a home computer. Of those
households, 70 percent had acquired their computer quite recently,
in either 1983 or 1984 (U.S. Bureau of the Census 1988, 2). By 1989 — the outer
boundary of the Commodore 64’s mainstream popularity — computer ownership had skyrocketed to
15 percent. Households with school-aged children were
nearly twice as likely to own a computer (at 25.7 percent), while 45.6
percent of households earning more than $75,000 annually ($138,000
in 2012 dollars) owned computers (Kominski 1991,
1–3).
[image: The graphics characters for each key of the Commodore 64 keyboard are printed on the side. Here, the two characters used in 10 PRINT are visible on the sides of the N and M keys. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.]

Figure 55-2. The graphics characters for each key of the Commodore 64 keyboard are printed on the side. Here, the two characters used in 10 PRINT are visible on the sides of the N and M keys. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.

Yet even as microcomputers became personal
computers, the prospect of computer ownership was closely tied to
income (U.S. Bureau of the Census 1988, 2). This trend was
exacerbated when race was factored in. Black and Hispanic families
were far less likely to have a computer at home in the 1980s, and
by 1997, this gap had translated into a digital divide online, in
which Whites were twice as likely as Blacks and Hispanics to use
the Internet (Kominski and Newburger 1999, 12).
Gender appears to have been less of a factor in computer use than
race or socioeconomic status was. In 1984, boys (31.9 percent) were
slightly more likely to use a computer than girls (28.4 percent),
even at school, but by 1989 that small gap had closed (46.5 percent
and 45.5 percent) (Kominski and Newburger 1999, table 3). The gap between adult
females and males follows a similar trend: A small divide becomes
smaller in the 1980s (ibid., table 5). However, women (29 percent
in 1984) were more likely to use a computer at work than men (21.2
percent in 1984), often because more women worked in data entry or
administrative support positions (ibid., table 6). A more
statistically significant discrepancy appears in computer ownership
by household income. Again, looking at 1984 and 1989, compare the
rise in home computer ownership from 5.3 to 8 percent in households
earning $15,000–$20,000 with 22.4 to 31.6
percent in households earning $50,000–$75,000
(Ibid., table 2). By 1989 the disparity appears magnified with 43.8
percent of families owning computers in the $75,000-plus range and
only 3.7 percent in the $5,000–$9,000 range
owning computers (table 2).
[image: This 1983 advertisement for the Commodore 64 sold the system as a powerful computer within the financial reach of middle-class families.]

Figure 55-3. This 1983 advertisement for the Commodore 64 sold the system as a powerful computer within the financial reach of middle-class families.

These socioeconomic, racial, and gender disparities are part of the
context of 10 PRINT, as much as the history of textured patterns or BASIC is. They can
be seen playing out in one of the iconic Commodore 64 magazine
advertisements of the era (figure 60.3).
Given how costly home computing was, Commodore shrewdly positioned
its computers as economical yet more powerful than its
competitors’. This 1983 advertisement declares, “You can’t buy a better
computer at twice the price” as it shames Apple, Radio
Shack, and IBM for pricing their personal computers at a range only
“wealthy,” “whiz-kid,” or “privileged” persons could possibly
afford. The difference between Commodore and these other PCs is not
measured solely in dollar amounts. The three costlier computers are
crowded into a black and white background, almost hidden from view
by the large “FOR NOBODY.” The Commodore 64 occupies the bottom half of the page, bathed in warm
colors. A father and mother watch their child explore the galaxy on
the computer, suggesting that the Commodore is a portal to a larger
universe — a universe of knowledge and opportunity. The family indicates a carefully targeted market.
Parents were twice as likely to purchase a computer. It is telling,
too, that this family is white and middle-class and that their
child appears to be a boy. Though the statistics suggest more
gender balance in access to computers, the advertisement reinforces
a narrative of home computers as the realm of boys. Doug Thomas
identifies the broader “hacker demographic” as predominantly
“white, suburban boys” (2002, x), and contemporary programming culture, from gender imbalances in
undergraduate studies to professional spaces, suggests of the force of that legacy. As
would be typical of advertising of that era, “everybody” actually turned out to
be an extremely specific demographic.
While the market for home computers was smaller than advertisers
acknowledged, the computers themselves spanned a range of styles
and forms that went far beyond the Apple-Commodore-TRS-80 trifecta.
In addition to the more well-known brands, there were also Sinclair
ZX Spectrums, BBC Micros, and computers from Amstrad and Acorn, all
of which originated in the United Kingdom. The Texas Instruments
TI-99/4A and the Coleco Adam were available, too. Among so many
choices, advertisers had to build the personality of not only the
brands but the individual machines as well. In the world of
computing since the inundation of PC clones, it is difficult to
imagine the aura produced around individual machines. Yet
today’s programmers can still recall their first
Apple IIc, VIC-20, or TRS-80. Apple alone now clings to the
marketing of “different” machines,
though even their computers have Intel inside and the company tends
to market product lines rather than individual model numbers. It
was a very different landscape that saw the advent of a personal
computer that wore its sixty-four kilobytes of memory as a badge of
honor. To buy a Commodore 64 was to buy capacity itself.
This diversity meant that different manufacturers could try
different types of hardware design and burn different operating
systems in ROM. It fostered certain types of corporate exploration
of the home computer market, while also limiting the way that
software could be shared — even if that software
was in the lingua franca of BASIC, given the variety of BASIC
dialects. The experience of home computing was in many ways
stratified by platform. The Apple Store was not the first example
of a platform-specific retail establishment to sell computers. Many
vendors would at least specialize in a particular
company’s computers; in some cases, stores were
exclusively Apple, Atari, or Commodore outfits, just as Radio Shack
was exclusively a seller of TRS computers (see figure
60.4).
Computer owners also created and joined user groups that were
specific to platforms and that met in person. As discussed in the
chapter on BASIC, they also subscribed to and read magazines that
were for computers of a certain type. When Bulletin Board Systems
(BBSs) came onto the scene, some hosted the users of many different
types of computer and others, particularly those devoted to making
software available for download, focused on a single platform.
[image: Local students at Bob West Computers in Brevard, NC, take turns with a Commodore computer. Courtesy of Bob West. ©1982, Bob West.]

Figure 55-4. Local students at Bob West Computers in Brevard, NC, take turns with a Commodore computer. Courtesy of Bob West. ©1982, Bob West.

This did not mean that every computer user was paired with a single
platform. Some households had more than one
computer — perhaps to keep the work computer from
being occupied by a younger member of the family, the parents would
decide to provide another computer more geared to games and
education. Even those without a computer at home might have access
to several at retail stores (which often allowed children to enjoy
extended sessions with the computers available for sale), at
school, and at friends’ houses. Given this
environment for computing, even those who were mainly Apple II
users or who tooled on their Coleco Adam systems at home might have
had an opportunity to play around a bit with a Commodore 64. With
limited time and particularly in the context of a school or retail
store, where the available software might be limited or
nonexistent, it would not have been a bad idea for a visitor to the
Commodore 64 to learn about and modify one-liners such as
10 PRINT.

COMMODORE BUSINESS MACHINES



The history of the Commodore 64 begins with the Canadian company
Commodore, founded in 1958 in Toronto by Jack Tramiel. Tramiel was
born Idek Tramielski, was a Polish concentration camp survivor, and
changed his name after World War II, when he emigrated to the
United States. After serving in Korea, Tramiel worked as a
typewriter repair technician, eventually opening a repair company
with a business partner. Commodore was the successor company that
they formed. This new company did not repair typewriters; it
manufactured them (Bagnall 2010, xiii). Once again, the history
of 10 PRINT is intertwined with earlier technologies. Personal computers were
hardly a natural progression or simple next step from typewriters,
but their prominent keyboards, their use as office equipment, and
their use for typewriter-like word processing tasks all demonstrate
they had affinities with earlier devices.
In the mid-1960s Commodore shifted its focus from manufacturing
typewriters to making calculators, a move driven by strictly
financial considerations. In hindsight, however, it seems to evoke
the same tension between text and numbers, between poetics and
algorithms, that underwrites the aesthetic and procedural
dimensions of 10 PRINT. Caught in a price war with Texas Instruments and Japanese manufacturers in the
1970s, Tramiel sought the cheapest calculator components he could
find, eventually buying parts from MOS Technology, a semiconductor
company where many former Motorola engineers worked. While MOS
Technology earned its revenue from selling calculator chips (mostly
to Commodore, its largest customer), the company was also
developing a microprocessor, the 6502.
This chip, the 6502, is now legendary for its role in 1980s
computing and videogaming. The 6502 became the central processing
unit (CPU) for the original Apple I, the Apple II, the Atari 400
and 800, the Nintendo Entertainment System (NES), and of course,
modified with an I/O port, the Commodore 64. In
a lower-cost package, the chip also powered the Atari 2600. Yet MOS
Technology never intended the chip to be used in computers or
videogame systems. The 6502 was designed as a single chip
replacement for the two- or three-chip processors found in cash
registers, appliances, and industrial machines.
“If we were going to do a computer,”
Chuck Peddle, the lead engineer on the project confessed,
“we would have done something else”
(Bagnall 2010, 14).
With an eye on vertical integration and the 6502 microprocessor,
Jack Tramiel bought MOS Technology in September 1976, but not in
the most straightforward fashion. Tramiel, widely considered a
ruthless businessman, withheld payments to MOS — whether because Commodore was cash-strapped
or there was a problem with an order of chips, or both, is a matter
of speculation. Nevertheless, it meant that MOS was in turn facing
a cash shortfall. The problem was compounded by a lawsuit from
Motorola over possible intellectual property infringement (Bagnall
2010, 56). Tramiel was able to buy MOS Technology at a bargain
price — about $750,000 — which meant that Commodore gained its own chip design and production
facility.
The PET



Tramiel was still intent on dominating the calculator business,
however, and it took Chuck Peddle and Commodore’s vice-president
of engineering, Andre Sousan, to persuade him that a personal
computer would in fact be the next generation calculator,
leapfrogging over Hewlett-Packard’s successful
programmable HP-65 calculator (Bagnall 2010, 62). Thus was born the
project that would become the eight-bit Commodore PET (figure
60.5), the first computer under $1,000 ($3,733 in 2012 dollars) to
include a monitor.
[image: The Commodore PET computer was released in 1977. It featured four kilobytes of memory and a tape drive for storing and loading programs. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.]

Figure 55-5. The Commodore PET computer was released in 1977. It featured four kilobytes of memory and a tape drive for storing and loading programs. Photo by Mark Richards, ©2007. Courtesy of Mark Richards.

The PET was particularly successful in Europe, where Commodore
already had a strong presence from its calculator business. With
nearly 70 percent of its sales in Europe through the 1970s, it is
no surprise that Commodore would include a pound sterling symbol on
the keyboards of the VIC-20 and Commodore 64. The PET’s name is a sign of the times; Sousan came
up with this name to capitalize on the pet rock craze of the late
1970s, and only afterward did Peddle suggest “Personal Electronic Transactor” as
a “backronym” that would explain the PET’s name logically (Freiberger 1982, 13).
As discussed in the BASIC chapter, the PET was the first of
Commodore’s computers to include BASIC in ROM,
making the PET ready for programming the moment the computer had
booted up. Another legacy of the PET that made its mark on the
Commodore 64 and on 10 PRINT is its extended graphical character set, informally dubbed PETSCII.
(The name “extends” ASCII, the standard character set for computers.) PETSCII was largely designed
for the PET by engineer Bill Seiler and Leonard Tramiel (Jack
Tramiel’s son), who worked at the time as
Commodore’s in-house tester and debugger
(Bagnall 2010, 92–93). The chief rationale for
PETSCII, which included the 128 characters of ASCII plus 128
additional graphic characters, was to provide a simple way to
produce graphical characters such as playing card symbols. It is
commonplace to observe that innovations in computer graphics drive
much innovation in computers — chip speed, bus speed, memory sizes, and so on — and here is a
less obvious example. While the graphical character set of PETSCII,
which features the four suits of cards, shaded patterns, and
various brackets and lines, could hardly be said to be an
innovation, it made possible early computer games in BASIC without
the need to program sprites or other animated figures. And PETSCII
made 10 PRINT possible as well, providing programmers with the two diagonal
characters found in the maze way back in 1977.

The VIC-20



While business and education were the primary markets for the PET
computers, its follow-up the VIC-20 was aimed squarely at the home
computer market. Released in 1980, the outside of the VIC-20 was
exactly the same physical form that the Commodore 64 would later
have. (The VIC-20’s plastic was lighter in
color, more of an off-white instead of the Commodore 64’s taupe.) Like both the PET and the Commodore
64, the VIC-20 was powered by the 6502 chip and included
Microsoft’s version of BASIC. The VIC-20,
however, was sold with only five KB of RAM, a tiny slice of the
Commodore 64’s sixty-four KB. The system also
had a color display that was twenty-two characters wide, powered by
the forty-pin VIC chip (Video Interface Controller). The VIC 6560
chip had been designed by MOS Technology engineer Al Charpentier to
be sold to other manufacturers like Apple and Atari, but none were
interested (Bagnall 2010, 178). Ultimately it found its way into
the VIC-20. Its shortcomings inspired the creation of a more
powerful graphics chip for the Commodore 64.
Because the VIC-20 ran the same version of Microsoft BASIC and
included the same PETSCII character set as the PET before it and
the Commodore 64 after it, the 10 PRINT
program executes flawlessly on the VIC-20, though no published
versions of the maze program intended for the VIC-20 specifically
are known to exist. If users had run 10 PRINT
or a variation on the VIC-20, they would have had a different
aesthetic experience than a Commodore 64 user (figure 60.6).
PETSCII was designed for the forty-column PET; on the
twenty-two-column VIC-20 the characters are elongated, stretched as
if one were watching an old 4:3 television show on a widescreen.
The maze looks almost 3D, as if seen from the isometric point of
view of Sega’s 1982 hit arcade game Zaxxon.
Despite its modest memory, the VIC-20 was seen as a dramatic
improvement over the PET computers, at a price that appealed to the
home market. The VIC-20 was sold in retail stores (including
K-Mart) to a broader market than previous computers had reached. It
was the bestselling computer of 1982 (the year when the Commodore
64 was introduced), selling 800,000 units, but then it took a back
seat to the more expensive but also much more powerful Commodore
64. While the VIC-20 was discontinued in 1985, the Commodore 64 was
sold through 1994.
There is much to say about the Commodore 64 as one of the most
popular home computers of all time, but for the sake of clarity it
is important to focus on those elements of the Commodore 64 that
come into play in 10 PRINT, namely, its unique graphical character set, the VIC-II chip that
implements the computer’s graphic capabilities,
and the ROM-based operating system, or KERNAL.
[image: The 10 PRINT maze on the 22 × 23 screen of the VIC-20.]

Figure 55-6. The 10 PRINT maze on the 22 × 23 screen of the VIC-20.



PETSCII



While the PETSCII character set was not unique to the Commodore 64,
it was an idiosyncrasy of Commodore computers; neither the Apple II
nor the TRS-80 line of computers, which competed with Commodore’s
computers, offered an extended version of ASCII. A close
examination of PETSCII, and particularly its implementation on the
Commodore 64, is therefore helpful in appreciating
10 PRINT.
The facts of PETSCII are simple: it is an extension of the
128-character ASCII (American Standard Code for Information
Interchange) set; in addition to letters, numbers, and punctuation,
it contains color codes (to turn text white, for example), screen
control codes (such as RETURN or CLR), and graphical characters
(lines, curves, arrows, boxes, and shaded patterns). These
graphical characters are labeled on the PET, VIC-20, and Commodore
64 keyboards, and are easily accessed with the Commodore or SHIFT
keys.
These facts are well known and well documented. Less obvious are a
myriad of quirks about PETSCII on the Commodore 64. To begin with,
the name PETSCII is unofficial. Commodore only ever referred to its
character set as ASCII; PETSCII was an informal name that came from the
Commodore’s users, not its engineers, that
conflated PET and ASCII. The character set’s
creator, Leonard Tramiel, was not in favor of the name PETSCII,
noting, “I never really liked that term since it
was never much of a standard” (Bagnall 2010,
92).
[image: Appendix F of the 1982 Commodore 64 User’s Guide lists the mapping between numerical values and graphical symbols in PETSCII.]

Figure 55-7. Appendix F of the 1982 Commodore 64 User’s Guide lists the mapping between numerical values and graphical symbols in PETSCII.

The Order of PETSCII



Another uncertainty about PETSCII is the order of the characters in
the PETSCII table (figure 60.7). Very few related graphical
characters are numerically adjacent to each other, neighbors
according to character code. In fact, many related images (sets of
corners, playing card suit symbols, and mirror images) appear to be
scattered throughout the table. A spade is CHR$(97) while a heart
is CHR$(115). The upper-right quarter of a circle is CHR$(105)
while the upper-left quarter is CHR$(117). A filled-in circle is CHR$(113), the outline
form CHR$(119).
Why is the order of graphical characters in the PETSCII table so
seemingly haphazard? The answer is that arrangement was dictated by
the PET keyboard design, a hardware-driven decision. The original
PET 2001 keyboard is a variant of the QWERTY arrangement, featuring
the graphical characters of PETSCII alongside the regular keyboard
letters (figure 60.8). The grid of keys became a canvas for
displaying logical groupings of related symbols. Thus the four
corners of a square are grouped on the keys for O, P, L, and :.
Similarly, the four arcs of a circle are found on the U, I, J, and K keys, and the four suits
of a card deck on A, S, Z, and X.
There are times when the visual grouping on the keyboard and the
numerical character codes logically coincide, namely with
alphabetically adjacent keys on the QWERTY keyboard: F, G, and H;
J, K, and L; N and M (though the letters are reversed here); and O
and P. In these four instances, the CHR$ codes associated with each
character are numerically adjacent, as is not the case with many of the other
graphical characters, which, while adjacent on the physical
keyboard, are effectively scrambled by the QWERTY layout before
being placed in the alphabetized PETSCII index.
Not coincidentally, 10 PRINT uses the NM pair — because it is visible on the
interface, because it is elegant and concise in the code, and
because the output is surprising, given the context of mazelike
computer graphics at the time. There are other pairs of keys that
share graphically related characters (the right angles on the O and P keys, for
example), but only NM will produce something more structural than
textural, with pleasing large-scale variation.
[image: The PET 2001 keyboard had PETSCII graphics symbols printed on the front of the corresponding keys. The graphics were arranged spatially on the keyboard. For example, notice the arrangement ╱ and ╲, side by side on the N and M keys.]

Figure 55-8. The PET 2001 keyboard had PETSCII graphics symbols printed on the front of the corresponding keys. The graphics were arranged spatially on the keyboard. For example, notice the arrangement ╱ and ╲, side by side on the N and M keys.

Taking a closer look at the graphical characters on the N and M
keys — CHR$(206) and CHR$(205), respectively — reveals more details about PETSCII.
First, there are the numbers themselves. The ASCII chart included
in appendix F of the Commodore 64 User’s Guide lists the values of ∕ and ∖
as CHR$(110) and CHR$(109), yet the title of this book uses
CHR$(205) as its touchstone, and the first two published versions
of the program, in the very same Commodore 64 User’s Guide
and Run magazine, also use CHR$(205) as their base. The Commodore 64 User’s Guide
notes that “CODES 192-223 SAME AS 96-127” (Commodore 1982, 137), meaning that 109 and 110
are exactly the same as 205 and 206. But why? Why do early versions
of the program use the upper character values (205 and 206),
especially when the PETSCII chart that appears in the manual itself
only lists the 109 and 110 values?
A likely explanation can be found in the way the Commodore 64
responds to PRINT ASC("X"), a technique used to determine the ASCII character code of any
printable character. If a user were seeking the character code of a graphic symbol she saw on her keyboard, say, the heart
on the S key, or more to the point, the diagonal line on the N key,
she could type PRINT ASC("/")  and the computer would respond with
“206.” So, a possible implication of 205/206 being used in 10 PRINT
is that users were more likely to experiment with the keyboard in
front of them than to look up codes in the back of the manual.
Through the ASC function, BASIC became a self-contained pedagogical instrument
itself, making outside manuals and guides less necessary.
[image: PETSCII character 206 (left) goes edge to edge within the grid, while character 47 (right), the forward slash, leaves space on the top and bottom for better spacing when used within a block of text.]

Figure 55-9. PETSCII character 206 (left) goes edge to edge within the grid, while character 47 (right), the forward slash, leaves space on the top and bottom for better spacing when used within a block of text.


The Shape of PETSCII



There is yet more to discover about the two graphical characters
that appear in 10 PRINT. Like all PETSCII characters, the two characters are plotted out on
an 8 × 8 matrix of pixels. Whereas regular alphanumerical characters are generally confined to a 7
× 7 portion of the matrix, leaving a single-pixel “border” between characters, many of
the graphical characters extend to the edge of their 8 × 8 grid. Consider the close-up of
CHR$(206) in figure 60.9. Its distinct features become apparent when compared
to the typographical symbol that most closely resembles it, the
forward slash, or CHR$(47).
CHR$(206) is three pixels wide in its body and terminates on
either end in a point, a thinning of the line that accounts for the divot
that appears whenever two of the same characters are connected in
the 10 PRINT  maze. The CHR$(47) slash, meanwhile, is a uniform two pixels wide. The difference
between the graphical character and the typographical symbol is a
mere one pixel along some of the edges, but it is significant. The
shape of CHR$(206) — as well as the shape of its mirror image, CHR$(205) — is
essential to the texture of the maze.


THE VIC-II CHIP



While the PETSCII character set remained the same from the PET to
the VIC-20 and through to the Commodore 64, the means of displaying
those characters — the chip controlling the
graphics — changed dramatically over time. Despite
its name, the 6567 (NTSC)/6569 (PAL) VIC-II graphics chip was not
merely an improvement upon the VIC chip in the VIC-20. It was a
complete redesign, led by Charpentier, the MOS engineer behind the
first VIC. Home videogame systems, particularly
Mattel’s Intellivision, were the chief
inspirations of the designers at MOS, who set out to create the
most advanced graphics chip on the market (Bagnall 2010,
318).
The specifications of the final version of the chip were impressive
for the time: three different forty-column text modes, two bitmap
modes of 320 × 200 pixels each, eight hardware-driven
sprites, hardware-supported screen scrolling, and a sixteen-color
palette (Bauer 1996). The influence of videogames can clearly be
seen in the VIC-II’s built-in side and vertical
scrolling (by seven pixels at a time) and the
VIC-II’s handling of sprites. Far more
sophisticated than the sprites in the Atari 2600, the VIC-II
sprites are 24 × 21 pixels and can be multicolored.
The VIC-II chip can detect collisions between sprites; it can also
detect when sprites have collided with other graphical data on the
screen or individually specified raster lines (the horizontal scan
lines on the CRT or television screen).
Text on the VIC-II



Despite its advanced sprite handling, though, the text modes of the
VICII chip are the most relevant to 10 PRINT.
The text or character-based modes occupy one kilobyte of screen
memory, and consist of forty columns and twenty-five rows of characters, namely 1,000 characters in
total. As 10 PRINT writes the maze across the screen, row by row, it plots one of its two
PETSCII characters in each space on the 40 × 25 grid,
and just for a fraction of a second, 1,000 characters do fill the
entire screen — in what might be considered an
illusory consummation of the maze — before the
text scrolls upward, leaving two more twenty-five-character rows to
fill.
This point is key to understanding the dynamic between the
aesthetic quality of the maze and the computer process by which it
is plotted. While the code for 10 PRINT
specifies one of two characters to display on the screen, it says
nothing about where on the screen the chosen character should
appear. That placement is defined by the VIC-II chip. More
specifically, the placement of either CHR$(205)
or CHR$(206) depends on the Commodore 64’s screen memory map.
To the user, the screen appears as a 40 × 25 grid,
but to the VIC-II graphics chip, the screen is a series of memory
slots, or locations. The first slot, 1024, is at grid location 0,0
and pixel location 0,0. Memory location 1025 maps to the space
after this, to the right, and so on. Any character value that is
stored in a memory slot will be displayed at the corresponding
screen position. The large border that surrounds the maze is not
addressable by the VIC-II; the thirty-two pixel borders on the left
and right and thirty-five pixel borders on the top and bottom were
created in consideration of the wide variation within cathode ray
tube televisions of the era. The CRT screen of different
televisions framed the pixels differently, making only a subset of
pixels in the center reliable for display. Running
10 PRINT in a software emulator, of course, eliminates the need for such a
border, though the Commodore 64’s KERNAL
nevertheless draws it.
The VIC-II also defines the way 10 PRINT
scrolls upward across the screen. The maze is programmed to loop
endlessly, so there must be a contingency available for when the
cursor has filled the entire screen grid with characters and there
is no next row. In addition to wrapping text automatically, the
VIC-II also automatically scrolls the contents of the screen when
the cursor is on the bottom row and attempts to move down. Though
the screen appears to scroll up two lines after hitting the last
character slot on the screen, from the Commodore
64’s perspective only one line is advanced; the
Commodore 64’s physical screen is forty
characters wide, but its logical screen width is eighty characters.
While the continual scrolling might seem to be intuitive, it is not
necessarily the only way it could have been done. A different environment could simply stop the program
when the cursor reaches the last location on the screen, or return
the cursor to the first row of the first column and begin again,
overwriting the characters that had already appeared on the
screen.

Designing New Characters



An intriguing feature of the VIC-II is its ability to use
RAM-programmable characters instead of the PETSCII characters
permanently stored in the character generator ROM. The
Commodore 64 Programmer’s Reference Guide explains how the VIC-II can be pointed to a location in RAM to use
as a new character set, giving users control over “an almost infinite set of symbols”
(Commodore 1982, 104). It is possible, therefore, to modify
10 PRINT, substituting alternate CHR$(205)
and CHR$(206) characters for the default PETSCII ones. Recall that the stroke of
both of these characters is three pixels wide. What might a
single-pixel diagonal line look like as the fundamental building
block of the maze?
With the VIC-II, that question can be answered. Using the
POKEcommand, a program can create and store two new bitmaps into the locations
of characters 205 and 206:
5 PRINT CHR$(142)
10 POKE 52,48:POKE 56,48:CLR
20 POKE 56334,PEEK(56334) AND 254
30 POKE 1, PEEK(1) AND 251
40 FOR I = 0 TO 511:POKE I+12288,PEEK(I+53248):NEXT
50 POKE 1, PEEK(1) OR 4
60 POKE 56334,PEEK(56334) OR 1
70 FOR I = 0 TO 7:POKE I+12904,2^I:NEXT
80 FOR I = 0 TO 7:POKE I+12912,2^(7-I):NEXT
90 POKE 53272,(PEEK(53272) AND 240) + 12
100 PRINT CHR$(205.5+RND(1)); : GOTO 100
This program causes diagonal lines a single pixel thick to be
substituted for the standard PETSCII characters. (The two
characters are written to memory in lines 70 and 80.) After this is
done, 10 PRINT (or in this new form, 100 PRINT)
produces a maze that is remarkably similar but that
nevertheless has a noticeably different appearance (see figure 60.10). The
maze seems to have a sketched or stitched quality. The points on
the ends of the original characters 205 and 206 are gone, so the
computer screen’s grid of characters is not
accentuated by them. While the different lines can evoke drawing
(as of a maze on paper) and craft, their more continuous nature and
the greater difference between figure and ground makes the
resulting output appear even more mazelike to many
viewers.


THE SID CHIP
While the features of the Commodore 64 that made
10 PRINT possible are chiefly BASIC, PETSCII, and the VIC-II graphics chip,
it would be a disservice to the Commodore 64 to ignore another
component that made the computer such a critical and popular
success: the MOS Technology 6581 Sound Interface Device (SID) chip.
Designed by Bob Yannes, the SID chip was a remarkable advance for
its time. A three-voice synthesizer with variable pitch, amplitude,
and harmonic tone controls, the SID made the Commodore a formidable
music maker and game machine. With the SID, programmers could
easily specify waveforms such as sawtooth or noise, as well as
independently manage the attack, decay, sustain, and release times
of the three oscillators (providing the three different voices) in
the chip. Furthermore, the three voices could be used in
conjunction with each other to create complex melodies, harmonies,
and rhythms.
What is most interesting about the SID chip for the purposes
of 10 PRINT is that the third oscillator — the only of the
three oscillators whose output can be fed back into the
CPU — can be used for number generation. Poking
SID memory location 54299 produces numbers from 0 to 255, while the
waveform controls the sequence of those numbers. For example, a
triangle waveform yields a cycling through every number from 0 to
255 and back down to 0, the rate controlled by the
oscillator’s frequency setting (Nelson 1987,
24). More relevant to 10 PRINT
is that the noise waveform produces random numbers, with the rate
of the random number generation determined by the frequency of
voice 3. Thus, even though the SID plays no part in
10 PRINT, it could have a role in a similar program, and does, as evidenced
by the assembly program “threadbare” that is discussed later.



[image: 10 PRINT with the two standard characters replaced with custom-designed, single-pixel lines.]

Figure 55-10. 10 PRINT with the two standard characters replaced with custom-designed, single-pixel lines.



THE KERNAL



The various components of the Commodore 64 discussed in this
book —  the RND function, BASIC, PETSCII, the VIC-II chip — are
all held together by the machine’s KERNAL, its
underlying operating system. A misspelling of the word
“kernel” that has stuck ever since
it first appeared on draft documentation for the VIC-20 (Bagnall
2010, 330), the KERNAL controls all input, output, and memory
management of the Commodore 64. Any keyboard input, any screen
output, any interaction at all with the
computer’s RAM or ROM is governed by the rules
of the KERNAL. It is the brainstem of the machine, its core, its
always-present, unyielding, and unchangeable center. Residing in
the last eight KB of the Commodore 64’s ROM ($E000–$FFFF), the KERNAL is made up of a
series of input and output routines, which can be found on the
“Jump Table.” Any command issued to the computer in BASIC (such as the 10 PRINT
program) is “translated” by the BASIC interpreter into a language that the CPU can understand,
namely assembly language, which calls routines in the Jump Table.
The KERNAL is intended to make machine language coding
easier, providing a stable set of instructions and registers a programmer
can address. Yet as enabling as the KERNAL may be, it is also
structuring and limiting, the basis of the Commodore 64.
A View from Assembly Language



Writing a maze-generation program in BASIC leaves the programmer
free from concerns about memory management, keyboard interrupts,
screen outputs, and so on. All those things are provided. This is
not the case when talking to the machine using a
“low-level” language. In fact,
Friedrich Kittler (1995) has famously argued that high-level
languages essentially obscure
the operations of the hardware. Skipping the BASIC interpreter or
any other high-level language means the programmer must manipulate
the microprocessor, memory, inputs, and outputs directly. Machine
language itself exemplifies low-level programming, but since a
machine language program is nothing but a series of numbers, it is
not a very suitable language for humans. Low-level programming is
typically done in assembly language instead. In assembly, the
programmer provides instructions specific to the microprocessor,
for example to load a value from a particular memory location into
a particular processor register, or to perform a mathematical
operation upon a memory location. In assembly, the programmer need
not recall the numerical equivalents of such instructions, but only
human-readable mnemonics for them — which are
stored in the Commodore 64’s KERNAL.
Recall that the microprocessor at the heart of the Commodore 64 is
a modified 6502 chip. While it is not necessary to know everything
about the 6502 to appreciate either the Commodore 64 or
10 PRINT, it’s worth noting that the chip essentially has
three functions: it moves values between memory and one of three
microprocessor registers (named X, Y, and Accumulator, abbreviated
A); it executes mathematical operations on values in the
accumulator; and it changes the address at which program execution
takes place. The first type of
operation is for loading or storing data (for example, the
assignment N=1 in BASIC), the second type is a typical mathematical operation
(say, + or − in BASIC), and the third corresponds to jumps and subroutine calls (analogous to
GOTO and GOSUB in BASIC).
Like every BASIC program, 10 PRINT
is high-level. It relies on abstracted operations like
PRINT and RND to perform complex tasks that
would require considerably greater effort to accomplish at a low
level. For this reason, it is useful to compare the BASIC version
of 10 PRINT on the Commodore 64 with its equivalent in 6502 assembly. Doing so
will help clarify what features of the program are unique to its
BASIC implementation.
10 PRINT seems to be a “native” BASIC program, meaning it was originally written in BASIC for the
Commodore 64, not first rendered in assembly and then reimplemented in BASIC. No
canonical assembly program is known to exist. As with literary
translation or artistic adaptation, there are multiple ways to
recast a computer program from one language into another, even on a
relatively simple system like the Commodore 64, and even with a
relatively simple program like 10 PRINT.
Along the way to developing a production for the demoscene party
@party, in June 2010, an assembly port of 10 PRINT
called “threadbare” was created.
  *= $1000     ; starting memory location
  lda #$80     ; set this value in:
  sta $d40f    ; the noise speed hi SID register
  sta $d412    ; and the noise waveform SID register
loop           ; label for loop location
  lda $d41b    ; load a random value
  and #1       ; lose all but the low bit
  adc #$6d     ; value of "\" PETSCII
  jsr $ffd2    ; output character via KERNAL routine
  bne loop     ; repeat
This short program may look arcane, even to someone familiar with
BASIC. Yet it can be explained without too much difficulty, step by
step, by following each instruction in the order in which it is
processed.
*= $1000
This line tells the Commodore 64 where to put the program in
memory, so that it can be run by the user. In this case,
hexadecimal $1000 equals decimal 4,096, meaning the user can
enter SYS 4096 at the READY prompt to execute this program.
lda #$80
This instruction has two parts, not counting the comment: The
opcode lda and the operand $80. All instructions have at least an
opcode — an operation code that corresponds to
something the 6502 processor can carry out. Not all opcodes need
take an operand, although all the ones in this program do. Some of
these operands are a single byte long, some are two bytes
long.
lda is the opcode for load into the accumulator,
and when used with # it loads the numeric value of the operand. In
other cases in this program, lda and the corresponding opcode sta
(storefrom the accumulator) use the operand as an address. Here, no lookup occurs; the
immediate hexadecimal value $80 (decimal 128) is placed into the
6502’s accumulator.
sta $d40f
sta $d412
These two instructions store the value held in the accumulator
(sta) in two different memory locations. The operand is used as an
address, to look up a location in memory. These memory locations
are mapped to registers of the SID, the Commodore
64’s sound chip.
loop
While all other lines of this program are indented, the
“loop” line is flush left. This is
not a mere typographical convention. The assembler treats lines
that begin with whitespace as instructions and lines that do not as
labels, which designate positions in the program. When the
assembler encounters a label such as
“loop,” it turns the label into a
memory address that corresponds with the current position in the
program. Then, on another pass through the source code, the
assembler replaces references to the label with the correct
sixteen-bit address. This label does not appear directly as machine
code in the assembled program; the address of this location is,
instead, used later, at the very end of the program.
lda $d41b
Once the SID registers have been initialized, every time the
program loads a value from the memory address $d41b, a new
eight-bit random value will be provided. This instruction does one
such load, bringing a random number into the
accumulator.
and #1
The two diagonal-line characters are neighbors on the PETSCII
chart, their values differing by one. Only one bit of randomness is
needed to select one or the other. Generating a random number from
the SID chip provides a much larger eight-bit number, which varies
between 0 and 255. In order to change this number into a single
bit — either a zero or a
one — this instruction shears off all but the last
bit by ANDing it with the decimal value 1.  For example, here the binary number 10101011 (171 in decimal) is
reduced to 00000001:
    %10101011
AND %00000001
=============
    %00000001
After this instruction, the accumulator will contain either the value 1 (as in the example above) or 0 (if the last bit of the
original value was 0).
adc #$6d


The value obtained in the previous step (0 or 1) is added in this
step to the hexadecimal value $6d (decimal 109), which corresponds
to the PETSCII character used in the canonical BASIC 10 PRINT.
Note that though adc stands for add with carry,
this instruction won’t ever perform a carry.
This addition will result in either 109 or 110. The value $cd
(decimal 205) could have been used instead, as this character is
the same as 109.
jsr $ffd2
All that’s left is to output the character,
either 109 or 110, to the screen. This instruction jumps to a
subroutine (jsr) at memory location $ffd2. That routine, known as CHROUT and part of
the KERNAL, takes care of putting the character on the screen at
the current cursor location.
bne loop
Until this point is reached, the program will have output only a
single character. The goal, of course, is a program that prints
characters continuously until the user interrupts it. This
instruction branches back to the label
“loop” earlier in the program, from
which point execution will continue by getting a new random value. The bne
instruction is actually “branch if not
equal,” which will check to see if the
processor’s zero flag is set, and if not, it
will complete the branch. In the case of the current program, the
zero flag will never be set, so the branch will always be
taken.
It would have been more straightforward to use the jump
(jmp) instruction, assembly’s equivalent of
GOTO. However, bne was used because it results in a completed program that is one byte
smaller. Because jmp can move the program counter to any location, it requires a sixteen-bit
address as an operand. In contrast, bne
can change the flow of the program to a location at most 128 bytes
earlier or 128 bytes later; its operand is an eight-bit offset
relative to the location of the instruction.
The completed assembly version of 10 PRINT elucidates
several features of the program from the low-level perspective of
the platform. Most crucially, the high-level abstractions of the
BASIC program prove to be just as abstracted in the low-level
assembly rendition. There are two such abstractions of note in the
original, PRINT and RND,
which constitute the majority
of the program’s computational work. Carrying
out either one in assembly by coding them “from
scratch” would be a more arduous task. Consider this
common routine for generating a pseudorandom eight-bit number in
6502 assembly:
Rand8
   lda random          ; get seed
   asl                 ; shift byte
   bcc Rand8.no_eor    ; branch if flag not set
   eor #$CF            ; otherwise literal $CF
Rand8.no_eor
   sta random          ; save next seed
Each assembly instruction (lda, asl, etc.) uses a single byte in the program, and in this case those
instructions that have operands (random, #$CF)
have one-byte operands. This results in a routine nine bytes in
size, or 25 percent of the space needed for the entire
10 PRINT program in BASIC (given that each character of BASIC takes up a
byte).
While the MOS Technology 6502 processor requires this nine-byte
subroutine to generate a random number, the Commodore 64 itself
does not, due to a combination of seemingly unrelated affordances
of its KERNAL and hardware. It’s a simple matter with the
Commodore 64 to use a random function, which although obviously
used in BASIC, is found not in the BASIC ROM, but in the eight
kilobytes of the Commodore 64 KERNAL, at address $e097. The
assembly programmer can jump to that subroutine with
jsr $e097, which will have the same effect as using RND(1)
in BASIC.
A more unusual approach to random number
generation — and the one that is taken in
“threadbare” — involves the Commodore 64 sound chip, the SID (see sidebar). Apart from its
sonic functions, the SID has the ability to generate random values.
To do so, the programmer selects the noise waveform on the
SID’s third oscillator and sets that voice’s frequency to a nonzero value. Setting a
higher frequency value will cause the noise values to change more
rapidly, yielding a greater variety of random numbers. The first three instructions of the
preceding assembly program accomplish these settings:
lda #$80         ; set this value in:
sta $d40f        ; the noise speed hi SID register
sta $d412        ; and the noise waveform SID register
After this code has run, the program can get a new eight-bit random
number by reading from memory location $d41b. While the code
looks a little messier than does a simple call to RND
in BASIC, the result is equally abstract from the
programmer’s perspective — it is simply abstracted to a different place, namely the SID chip
instead of the KERNAL. This method of producing pseudorandom values
is unusual, but certainly not unheard of. It is even documented in
the Commodore 64 Programmer’s Reference Guide (Commodore 1982, 202). Interestingly, this substitute for
BASIC’s RND(1) or the KERNAL’s jsr $e097
renders “threadbare” unusable on the
VIC-20. That Commodore 64 predecessor did not include a SID chip,
meaning it lacked this means of generating pseudorandom numbers.
This incompatibility highlights the differences between a
high-level language like BASIC, which will run 10 PRINT
on any of Commodore’s computers, and a low-level
language like assembly, which relies much more heavily on the
specifics of the machine.
Drawing a character to the screen is an equally complex task that
can prove challenging in 6502 assembly on the Commodore 64.
10 PRINT places every character in the maze after the previous cursor
position, making the maze appear to lay itself out column by
column, row by row. To reproduce this behavior manually in 6502
assembly, the programmer would seem to have considerable work:
determining the start of a screen, pausing, moving ahead one more
position on the screen, repeating until the screen is filled, and
then implementing a scrolling mechanism.
But as with the SID random number solution, the Commodore
64’s KERNAL provides a much simpler solution.
One subroutine of the KERNAL sends the PETSCII character value
currently in the 6502 processor’s accumulator to
the current output device (the screen by default). That subroutine,
CHROUT, lives at memory address $ffd2, and it can be executed in
assembly by jumping to that address. This is precisely what
“threadbare” does, after loading a
random value and manipulating it to ensure that it will be one of
the two slash characters that comprise the maze:
jsr $ffd2         ; output character via kernal routine
The output of the assembly program is essentially identical to that
of 10 PRINT, although the program runs a bit more quickly because the
microprocessor is receiving machine instructions directly, rather
than as translations of BASIC statements.
“threadbare” is shorter than its BASIC cousin (twenty-two bytes for the assembly version, compared
to thirty-six bytes, or characters, for the BASIC program). While
“threadbare” is clearly more esoteric and less human-readable than its BASIC predecessor, its
implementation reveals that the abstraction that makes the emergent
elegance of 10 PRINT’s output possible in such a small set of instructions is not entirely
a feature of the BASIC interpreter, but also depends on the
underlying hardware and operating system of the Commodore
64.
Though 10 PRINT is an example of a robust one-liner that can be re-implemented in
other languages and platforms, it is a program deeply tied to the
material specifications of the Commodore 64, a bestselling personal
computer that played a pivotal role in establishing a place for
computers and programming in certain users’
homes. While discussion in this book has so far focused on the code
of 10 PRINT
and its effects, this chapter reveals the imbrication of code and
platform and ways in which specific code can become a means of
discussing the platform and its affordances.


“THREAD,” A TINY DEMOSCENE PRODUCTION
The demoscene is a programmer subculture centered on the design and
manipulation of real-time audiovisual software. The origins of
demoscene can be found in the cracking of eight-bit software for
systems such as the Apple II, Commodore 64, and ZX Spectrum in
order to remove copy protection. The individual or groups who
cracked a particular piece of software would distribute the
modified program with a signature of some sort (text-based or
graphical) that displayed as the program loaded. Over time, these
signatures began to include animated effects with sound.
Eventually, productions growing from these additions were released
apart from commercial software and called intros or (if they were
more elaborate) demos. The hallmark of the demoscene is its
emphasis on technical achievement and pushing the limits of earlier
hardware systems. The demoscene also maintains interest in
technically excellent systems from decades past, such as the
Commodore 64: more than a hundred demos were programmed for the
system in 2011 and music is continually being written for the
system as well.
A demoscene production that was developed along with
“threadbare” is a program called
“thread”; it adds a progression
through random colors to the drawing of the maze. This program,
which is only thirty-one bytes long, shows some of the ways that a
short assembly program can be extended. It takes advantage of some
features of assembly, such as easy access to the zero page, which
would have been much more difficult to incorporate in
BASIC.
In “thread,” the loop in the earlier program is elaborated in this way:
flourish
   tay
   lda ($f9),y  ; load color
   sta $0286    ; set char color
   lda $d41b    ; random
   and #1       ; lose all but low bit
   adc #$6d     ; value of one diag
; now either left or right diag
   jsr $ffd2    ; output character
   inx
   bne flourish ; do 256 times...
   inc $f9      ; shift to new region
10 PRINT was not intended to be a demo; it was not created within the demoscene,
or with competition of any kind in mind. Nevertheless, the
program’s abstract, full-screen graphics bear
similarity to the animated effects that characterize demoscene
productions. While those features could be attributed to the
canonical, BASIC version of 10 PRINT, “thread” adds a simple form of
color-cycling. The method by which this small alteration in the
program’s visual output is accomplished likewise
embraces the spirit of the demoscene. While the color shift appears
dramatic (at least in the context of a simple thirty-one-byte
program like this one), it is created by two assembly instructions
totaling five bytes:
lda ($f9),y     ; load color
sta $0286       ; set char color
This portion of the program loads an arbitrary value from memory
and stores it in the memory location that sets the character color.
While far simpler than some of the feats of demoscene programs,
this small act is suggestive of the competitive nature of the
subculture: an attempt to produce impressive results with limited
resources.
Another feature of “thread” distinguishes it from the BASIC rendition of 10 PRINT:
it was written in a different social context. BASIC programming on
home computers like the Commodore 64 almost always involved
sharing, often through magazines and face-to-face computer club
meetings. But demos are often written in the context of
demoparties, events that hundreds of people may attend and that
typically last several days. Participants program, socialize, share
tricks, collaborate on programs, and watch and vote on the output
of productions. “thread” was
produced at a small-scale party of this sort.
Within the demoscene, it is a typical pastime to try to compress
similar programs into less and space. Indeed,
“thread” was created in the hopes of reducing the program to thirty-two bytes or
below — bit-boundaries or powers of two offer
popular ways to set goals for demos. There is a whole category for
thirty-two byte demos on the demoscene community website pouet.net.
The version of “thread” above just makes the cut:
it is thirty-one bytes — small by any reasonable
measure. But subsequent to the appearance of
“thread” and “threadbare,” other members of the
C64 demoscene community went on to fashion even smaller versions
that produce the same output as 10 PRINT
in an impressive eighteen bytes. This was accomplished in the
program “Thread Up,” written in
February 2012 by 4-Mat of the demoscene groups Ate Bit and Orb:
<http://noname.c64.org/csdb/ release/?id=106005>. A follow-up
a few days later, in March, by Wisdom of Crescent is called
“Thread Down” and squeezed the same
essential effect into sixteen bytes, half our original limit:
http://noname.c64.org/csdb/release/?id=106044. The obvious
question: can you make a smaller version?





60. REM MAZE WALKER IN BASIC



10 PRINT can be appreciated purely for its visual
qualities — its regular asymmetry, its determined
ranging over and across the screen, and even its colors, two shades
of blue that can be pleasing. But 10 PRINT can
also be interpreted as a maze, a labyrinth with routes and
potentially with a solution. One might even wander through the
maze, tracing a path with one’s eyes, a finger, or some
computational procedure.
What would such a computational procedure, and a program that
supports its use, look like?
To see the answer, this section uses a software studies approach,
writing programs to interpret other programs. It takes this
approach to the extreme and builds a large program, using
10 PRINT as the starting point. Just as literary scholars study a text by
generating more texts, it is productive to study software by coding
new software. In this particular case, it’s
possible to develop a series of hermeneutic probes in Commodore
BASIC — probes of increasing complexity, programs
that transform 10 PRINT’s output into a stable, navigable, and testable maze.
FIXING THE MAZE



The first step in this process is to freeze the pattern so that it
can be contemplated as a fixed maze. 10 PRINT,
of course, produces an endlessly scrolling sequence of two symbols,
an animated effect lost in the static images shown in this book.
For at most an instant — after the screen has
filled and the lower-right character has been drawn, but before the
pattern has scrolled up to make room for the next
line — is there ever a rectangular maze pattern
filling the entire screen within the border.
To draw a stable rectangular maze pattern, 10 PRINT
must be modified to draw a finite number of symbols, rather than an
infinite sequence. As described in the chapter Regularity, the
program must use a bounded rather than unbounded loop, placing
characters on the screen a set number of times. To fill the forty
columns and twenty-five rows, 1,000 characters must be drawn (40
× 25 = 1000).
This task can be accomplished using the FOR . . . NEXT
construct discussed in the Regularity chapter. Here is a program
that uses PRINT to output exactly 1,000 characters:
10 FOR I=1 to 1000
20 PRINT CHR$(205.5 + RND(1));
30 NEXT I
As might be expected from observation of 10 PRINT,
the screen scrolls up when the last character is printed; in this
case, there are four lines at the bottom that lack the maze
pattern. Furthermore, once the program ends, the
“READY.” prompt appears with a
blinking cursor stationed after it.
Trying to avoid this nonmaze text, one could add
40 GOTO 40 at the end of the program. This would create a continuous loop that
did nothing but keep the program from terminating. This valiant
attempt fails; “READY.” and the
blinking cursor are avoided, but a two-line gap still appears at
the bottom of the screen. Changing
“1000” in line 10 to “999” moves the program closer to
the goal; everything but the lower-right character is drawn, and
there are no blank lines at the bottom. But the program is still
one character away from completely filling the screen with the
maze.
As discussed in the chapter The Commodore 64, PRINT
invokes the operating system’s CHROUT routine with its
automatic scrolling and eighty-character logical lines. When the
one-thousandth character is printed (at the eightieth character of
the last logical line on the display), the screen scrolls up by two
physical (forty-character) lines to make room for the next
eighty-character logical line. To generate a complete screen of a
stable maze, it is necessary to use a mechanism other than the
virtual Teletype provided by PRINT
and the CHROUT routine it invokes.
To create a fixed screen-sized maze, a program can directly place
PETSCII character codes into the computer’s
video memory. Rather than iterating from one to 1,000, the
FOR loop must iterate though the 1,000 characters as locations in video
memory, which begin at memory location 1024 and end 1,000
characters later at 2023. Because these invocations of
POKE rely on memory locations rather than character codes, this modified
program must also refer the correct screen codes for the
diagonal-line characters (77 and 78), rather than the 205 and 206
values that are the PETSCII codes used in the CHR$statement.
This same use of 77 and 78 was seen in the POKE
variation near the end of the Variations in BASIC
remark.
10 FOR I=1024 TO 2023
20 POKE I,77.5+RND(1)
30 NEXT I
40 GOTO 40
One final nicety can be added: a standard statement at the
beginning to clear the screen, PRINT CHR$(147);.
This is not strictly necessary for this program, since the full
screen will be overwritten one way or the other with a maze, but it
makes the initial unfolding of the maze look a bit neater. It
actually helps in the next step and in future programs, because
this statement also restores color memory, cleaning up the traces
of previous walks of the maze.

WALKING THE MAZE



Now that code has been developed to draw a stable full-screen maze
pattern, work can begin on a program that treats this pattern as a
maze and “walks” it, moving through it with respect for the “walls” set
up by the two characters. The first step is to determine a location
within the maze. Viewers will often interpret the lighter slanting
characters as thin walls and the dark blue background as the floor,
although the opposite interpretation is possible. The program
discussed here considers the light, thinner lines to be
walls.
The first step in operationalizing this view of the
maze — that is, in creating a computational system
that functions in a way that is consistent with this
interpretation — involves defining what it means
to occupy a location within the maze. How can a
“walker” be placed at a particular
point in the maze?
The challenge is that the visual distinction between walls and
floor is not explicitly represented in the program. A close-up of
the maze pattern, with black outlines around the individual
characters, each of which is plotted out on an 8 × 8
matrix, shows these distinctions. The dark blue is the background
of characters, but positions within the dark blue
“corridor” have no unique character
locations. Dark-blue and light-blue areas of the screen are
distinguished at the level of individual pixels, but in the
graphics mode used, it is only possible to manipulate the larger 8
× 8 pixel characters:
[image: image with no caption]

Designating a particular screen location (such as the highlighted
location in maze below) would identify one of the slanting
characters (a wall segment), but would not identify which side of
the wall is currently occupied:
[image: image with no caption]

Given a diagonal wall location, it’s possible to
imagine someone approaching that wall from above, below, left, or
right — that is, along a particular course or
heading. The walker, in this view, would ricochet off the wall
along particular headings. Approaching a right-leaning diagonal
from above or from the left implicitly indicates that the walker is
in the corridor segment above the wall, while approaching from
below or from the right suggests the walker is in the corridor
segment below the wall. These relationships are reversed for the
left-leaning diagonals. In this view, in addition to a particular
X, Y location, a third piece of information — a
heading, or particular direction of movement — can
be used to uniquely identify the maze location and where the walker
will go next:
[image: image with no caption]

Given an initial location and a heading, the walker moves through
the maze in a sort of drunken (or very determined) walk, not unlike
the first run of Claude Shannon’s Theseus mouse
through its maze of relays and switches. In the case of the
“Maze Walker” program here, the
walker encounters and bounces off the walls in the manner
depicted:
[image: image with no caption]

The BASIC code for “Maze Walker” is
as follows:
10 REM PRODUCE A STABLE MAZE
20 PRINT CHR$(147)
30 FOR I=1024 TO 2023
40 POKE I,77.5+RND(1)
50 NEXT I

100 REM SET INITIAL X AND Y WALKER LOCATION AND DIRECTION
110 REM DIRECTION IS EITHER 0 LEFT, 1 RIGHT, 2 UP, 3 DOWN
120 X=INT(RND(0) * 39) : XOLD=-1
130 Y=INT(RND(0) * 24) : YOLD=-1
140 DIR=INT(RND(0) * 3)
150 WOLD=-1
160 GOSUB 500

200 REM START WALKING MAZE USING RULES FOR BOUNCING OFF WALLS
210 REM COMPUTE NEW LOCATION BASED ON INITIAL DIRECTION
220 IF DIR=0 THEN X=X - 1 : GOTO 270
230 IF DIR=1 THEN X=X + 1 : GOTO 270
240 IF DIR=2 THEN Y=Y - 1 : GOTO 270
250 IF DIR=3 THEN Y=Y + 1

260 REM DETERMINE IF THE WALKER IS OFF THE SCREEN
270 IF X >= 0 AND X <= 39 AND Y >= 0 AND Y <= 24 THEN GOTO 300
280 GOSUB 600 : GOSUB 650
290 GOTO 10

300 REM BOUNCE OFF WALL AS FUNCTION OF DIRECTION
310 REM 77 IS \, 78 IS /
320 WALL=PEEK(1024 + X + (Y * 40))
330 IF WALL=78 THEN GOTO 380
340 IF DIR=0 THEN DIR=2 : GOTO 420
350 IF DIR=1 THEN DIR=3 : GOTO 420
360 IF DIR=2 THEN DIR=0 : GOTO 420
370 IF DIR=3 THEN DIR=1 : GOTO 420
380 IF DIR=0 THEN DIR=3 : GOTO 420
390 IF DIR=1 THEN DIR=2 : GOTO 420
400 IF DIR=2 THEN DIR=1 : GOTO 420
410 IF DIR=3 THEN DIR=0
420 GOTO 160

500 REM DRAW WALKER, RESTORING PREVIOUS WALL CHARACTER
510 GOSUB 600
520 XOLD=X : YOLD=Y
530 M=1024 + X + (Y * 40)
540 WOLD=PEEK(M)
550 C=55296 + X + (Y * 40)
560 POKE C, 1 : POKE M, 87
570 GOSUB 650
580 RETURN

600 REM RESTORE WALL AT PREVIOUS WALKER LOCATION
610 IF XOLD=-1 THEN GOTO 630
620 POKE 1024 + XOLD + (YOLD * 40), WOLD
630 RETURN

650 REM PAUSE FOR 500 LOOPS
660 FOR I=1 TO 500 : NEXT I
670 RETURN
Because it is written in BASIC, the code to
“Maze Walker” is fairly legible,
even if it is significantly longer than BASIC programs discussed so
far. A line-by-line explication will highlight the process by which
“Maze Walker” walks the maze. The
program begins with lines 20 through 50, filling the screen with a
random maze as described in the last section.
Line 120 initializes a random horizontal (X)
location between 0 and 39, representing the forty columns across
the screen. The range 0 to 39 is used instead of 1 to 40 because
this X value indexes a location in video memory; counting from 0 more directly
corresponds to memory locations.
The variable OLDX
holds the previous X
coordinate of the walker. Initially, since a new
X coordinate has just been initialized, there is no old
value — so the Xcoordinate is set to an invalid value, −1. A common
technique when dealing with a variable that can take a range of
values, this method allows the variable to be easily tested to
determine whether it has a valid value yet. Similarly, line 130
initializes a random Y coordinate between 0 and 24 (for the twenty-five rows on the
screen), and initializes OLDY, the previous Y
location, to −1, since there is no previous Y
coordinate.
Line 140 sets the initial heading to a number between 0 and 3; the
program will interpret 0 as left, 1 as right, 2 as up, and 3 as
down. WOLD, initialized in line 150, stores the value of the screen code at the
given location. The program “remembers” the location, so that
the maze wall can be redrawn after the walker has passed.
Line 160 jumps to a subroutine at line 500. This program has three
subroutines: one to draw the current location of the walker,
changing the color of walls that have been bumped into; one to
redraw the wall after the walker has passed; and one that simply
pauses (using a loop that does nothing) so that the walker’s movement is not
too fast. The GOSUB at line 160 jumps to the first draw subroutine, pinpointing the
initial location of the walker.
Lines 220 through 250 determine the next position of the walker (as
an X, Y coordinate) by referring to the walker’s
heading. Leftward movements decrease the X
value, rightward movements increase it; upward movements decrease
the Y value, downward movements increase it. For the Y
values, this change is the opposite of the standard Cartesian grid,
in which the 0,0 coordinates rest in the lower left-hand corner.
Screen coordinates commonly begin in the upper left-hand corner,
just as CRT monitors scan the screen from left to right and top to
bottom.
Lines 270 through 290 define what happens if the walker runs off
the edge of the screen. Line 270 uses an conditional statement,
an IF . . . THEN  statement, to test whether the walker has a legal position on the
screen; if it does, the program jumps to line 300, where a new
heading for the walker is determined. Otherwise, two subroutines
are called. These restore the wall at the
walker’s last location and wait for a short span
of time. Line 290 then jumps back to the beginning of the program,
drawing a new maze and re-initializing the walker at a random
location.
Lines 320 through 410 determine the new heading of the walker using
the current location’s wall segment and the
current heading. Line 320 uses the PEEK
command to see what is in video memory — what
character is stored at the current location. In this line, the 2D
grid of the screen is rolled up into one-dimensional video memory.
Screen location 0,0 in the upper left-hand corner corresponds to
the first location in video memory, 1024. Each line of forty
characters corresponds to a range of forty memory locations, with
each group of forty following each other successively in memory. So
multiplying the vertical Y coordinate by forty, and adding the horizontal X
coordinate, yields the appropriate location in video memory.
Each of the four headings resolves into one of four new headings
for a right-leaning diagonal character and one of four new headings
for a left-leaning diagonal character. The eight IF . . . THEN
statements at lines 340 to 410 handle each of these eight cases.
The IF…THEN at line 330 jumps to the second group of four IF . . . THEN
statements for a right-leaning diagonal character, allowing program
execution to fall through to the first group of IF . . . THEN
statements for the other character. The GOTO statements
at the end of each line jump over the rest of the
IF…THEN statements once the correct new heading has been set.
Line 420 is the last line of the main loop. It loops back to start
the process of drawing the walker at its current location, and
updating location and heading, all over again.
The subroutine at line 500 draws the walker at its current location
and redraws the wall in the location that it just left. At the
beginning, in line 510, there is a call to the subroutine at line
600, placing the correct wall character in the old position of the
walker. Then, the subroutine saves the current X, Y
to the old location XOLD, YOLD. Line 540 computes the location in video memory (M)
for the current X, Ylocation.
This memory location is used twice: on line 530 to save the current
character at this location, and in the second POKE on
line 560 to change this character to a new character representing
the walker. It would be ideal to use a character that shows the
walker standing next to the wall, but there is no character in the
standard character set that combines a diagonal line with a shape
next to it. It is possible to define custom characters for the four
combinations of walls with walkers, but this program uses the
built-in character with screen code 87 to represent the walker.
This has the disadvantage that from a static screen shot that
walker’s exact maze location is visually
ambiguous. While watching the walker move as the program executes,
however, the location is discernible from the pattern of
movement.
Line 550 computes the memory location in color memory given
the X, Y screen location. There are 1,000 bytes of color memory, as with
video memory. The effect of values in color memory on the display
depends on the graphics mode. In character mode (used in
10 PRINT and in this program), each location in color memory stores a color
code that tells the system what color should be used to draw the
character indicated by the screen code in the corresponding
location in video memory. The first POKE on line 560 stores a color code of 1, which draws the corresponding
screen code using the foreground color white. Finally, line 570
makes a nested call to the subroutine at 650, which adds a delay to
the maze walker, making it easier to observe the details of the
walker’s movement.
The subroutine at line 600 redraws the wall character from the maze
walker’s previous location. Without this subroutine, the walker would leave a trail behind it, slowly
replacing the walls of the maze. The IF…THEN at line 610 tests whether the previous location is a valid
location, which it is not on the first call, when XOLD is initialized to −1. Although the wall is
restored as the walker passes by, the color code in color memory is
not restored. This means that the redrawn wall will appear in
white, leaving a trail of white walls to mark the
walker’s passage.
Finally, the subroutine at line 650 adds a delay between each step
through the maze. The FOR loop contains no statements before the NEXT;
it simply counts to 500. To increase or decrease the delay time,
this value can be increased or decreased. There are a number of observations to make about the
10 PRINT maze, the representational properties of BASIC, and the Commodore
64 environment based on the development of “Maze
Walker.” First, it takes considerable effort to
transform the visual perception of a maze with walls and a floor
into a practical functioning model of this perception. Decisions
must be made about what it means to hold a location in the maze and
to move through it. This program sharpens the somewhat vague visual
perception of “mazeness” into a
highly detailed understanding of the local structure of the
maze.
Second, the representation of movement requires repeatedly drawing
and erasing a shape (the representation of the walker), with the
need to remember what lies “under”
the shape so that the occluded object can be correctly redrawn.
This basic principle of continuously drawing and erasing static
snapshots to produce the illusion of movement is a fundamental
feature of modern media, seen in everything from the latest Pixar
movie to the latest blockbuster Xbox game. The related principle of
collision with virtual objects, when combined with the
representation of movement, defines graphical logic, a
representational trope that underlies the
computer’s ability to represent virtual spaces.
In the compressed form of “Maze
Walker,” there are specific lines that encode the
concept of collision with walls: lines 320 through 410.
Finally, the ability to observe walks through the maze brings
clarity to the structure of the 10 PRINT
maze. A typical (stabilized) 10 PRINT
maze consists of loops of various lengths that are interspersed
with runs connecting two locations on the edge of the maze. The
pattern therefore consists of multiple, intertwined unicursal
mazes; once embarked on a particular path from edge to edge, there
are no choices to make. A 10 PRINT
maze might be considered multicursal if there is a choice of where
to enter the maze from one of the outside
“openings,” but once such a choice is made, the path will lead irrevocably to its paired entrance or
exit.

TOUCHING THE MAZE



While “Maze Walker” allows the user
to watch a computer “other” navigate
the maze, a program can turn this spectacle into an interactive
environment. Here, computation acts as a prosthesis, or extension
of the user’s sense of touch, presenting the
user with solid walls that constrain navigation.
10 REM PRODUCE A STABLE MAZE
20 PRINT CHR$(147)
30 FOR I=1024 TO 2023
40 POKE I,77.5+RND(1)
50 NEXT I

100 REM SET INITIAL X AND Y WALKER LOCATION AND DIRECTION
110 REM DIRECTION IS EITHER 0 LEFT, 1 RIGHT, 2 UP, 3 DOWN
120 X=INT(RND(0) * 39) : XOLD=-1
130 Y=INT(RND(0) * 24) : YOLD=-1
140 DIR=INT(RND(0) * 3)
150 WALL=-1
160 GOSUB 500

200 REM WAIT FOR LEGAL MOVE GIVEN LOCATION AND DIRECTION
210 GET A$ : IF A$="" GOTO 210
220 IF A$=" " THEN GOSUB 600 : GOTO 120 : REM HYPERSPACE
230 REM 77=\, 78=/ 0 LEFT, 1 RIGHT, 2 UP, 3 DOWN
240 IF WALL=78 THEN GOTO 310
245 REM UP
250 IF (DIR=0 OR DIR=3) AND ASC(A$)=145 THEN DIR=2 : GOTO 400
255 REM RIGHT
260 IF (DIR=0 OR DIR=3) AND ASC(A$)=29 THEN DIR=1 : GOTO 400
265 REM DOWN
270 IF (DIR=1 OR DIR=2) AND ASC(A$)=17 THEN DIR=3 : GOTO 400
285 REM LEFT
290 IF (DIR=1 OR DIR=2) AND ASC(A$)=157 THEN DIR=0 : GOTO 400
300 GOTO 200

310 REM DOWN
320 IF (DIR=0 OR DIR=2) AND ASC(A$)=17 THEN DIR=3 : GOTO 400
330 REM RIGHT
340 IF (DIR=0 OR DIR=2) AND ASC(A$)=29 THEN DIR=1 : GOTO 400
350 REM UP
360 IF (DIR=1 OR DIR=3) AND ASC(A$)=145 THEN DIR=2 : GOTO 400
370 REM LEFT
380 IF (DIR=1 OR DIR=3) AND ASC(A$)=157 THEN DIR=0 : GOTO 400
390 GOTO 200

400 IF DIR=0 THEN X=X - 1 : GOTO 450
410 IF DIR=1 THEN X=X + 1 : GOTO 450
420 IF DIR=2 THEN Y=Y - 1 : GOTO 450
430 IF DIR=3 THEN Y=Y + 1

450 REM DETERMINE IF THE WALKER IS OFF THE SCREEN
460 IF X >= 0 AND X <= 39 AND Y >= 0 AND Y <= 24 THEN GOTO 160
470 GOSUB 600
480 GOTO 10

500 REM DRAW WALKER, RESTORING PREVIOUS WALL CHARACTER
510 GOSUB 600
520 XOLD=X : YOLD=Y
530 M=1024 + X + (Y * 40)
540 WALL=PEEK(M)
550 C=55296 + X + (Y * 40)
560 POKE C, 1 : POKE M, 87
570 RETURN

600 REM RESTORE WALL AT PREVIOUS WALKER LOCATION
610 IF XOLD=-1 THEN GOTO 630
620 POKE 1024 + XOLD + (YOLD * 40), WALL
630 RETURN
The change between this and the previous walker is found in lines
200 through 390. These lines replace the code that changed the
walker’s heading given the current heading and
the wall type. Now the program reads the keyboard, looking for
arrow keys. The user can use the arrow keys to move backward and
forward along the current path as allowed by the wall at the
current location and the current heading. Line 210 uses the
GET statement to read a character from the keyboard. If no key has been
pressed, GET returns the empty string. The IF . . . GOTO
in the second statement on line 210 loops continuously until a key
has been pressed.
Line 220 tests whether the spacebar has been pressed. If so, the
subroutine at line 600 that redraws the wall at the current walker
location is called, and the program jumps to 120, initializing the
current location and heading to new random values. This allows the
user to jump to a new location after exploring the current path to
the edge of the screen, or after completing a loop.
Line 240 selects between the four different cases for ∖ and ∕.
Consider the cases for ∖, when WALL is 77. If the current heading is left or down, the walker is on the
left side of the slash. The valid headings to move are right and
up. If the current heading is right or up, the walker is on the
right side of the slash. The valid headings to move are left or
down. Now consider the cases for ∕, when WALL
is 78. If the current heading is left or up, then the walker is on
the right side of the slash. The valid headings to move are down or
right. If the current heading is right or down, the walker is on
the left side of the slash. The valid headings to move are up or
left.
The eight IF . . . THEN
statements from 250 through 380 handle these eight cases, checking
whether the user has hit an arrow key corresponding to a valid
heading given the current heading. If a key other than space or an
arrow key is hit, or if the arrow key is not valid given the
current wall and heading, control will fall through to 300 or 390,
and the program will loop back to 200 to continue scanning the
keyboard. Thus, the walker only moves when the user pushes an arrow
key in a valid heading, enforcing the “solidity” of the walls and
responding only to valid input.
The interactive maze walker allows the user to trace a finger along
the maze pattern, kinesthetically experiencing the ricocheting
movement employed by the maze walker. The ability to jump randomly
about the maze allows the user to explore many paths in the same
maze, observing how the various loops and trails
intertwine.

TESTING THE MAZE



What would it mean for the 10 PRINT maze
to have a solution? Given that the only choice to be made is
outside the maze, in choosing an entry point, one definition of a
solution would be a path that leads all the way from one side of
the maze to the other. Solving the maze would, in this case,
consist of choosing the right entry point to make it all the way to
the other side.
This question of solutions is just one example of the more general
question of determining maze properties. One could as easily be
interested in mazes that have really long loops, or as many loops
as possible, or as many side-to-side paths as possible, or lots of
really short paths, and so forth. Is it possible to computationally
recognize such properties, so that the design space of
10 PRINT mazes can be explored and mazes can be generated with specific
properties?
The perhaps-surprising answer is yes. Computer science offers a
general approach to such problems called generate and test. It is
based on the observation that, while directly generating a solution
to a problem is generally difficult, recognizing whether a proposed
solution is in fact a solution is easy. Therefore, to solve
problems, or to generate artifacts with desired properties, one
approach is to use a relatively simple generator to generate
candidates and then test them to see if they have the desired
property. For 10 PRINT, this means generating random maze patterns (as explored throughout
this book), and then testing them to see if they have the desired
property. In the explorations that led to this book, the authors
wrote programs as a method for better understanding
10 PRINT. The generate and test paradigm provides a framework for extending
this practice by writing programs to analyze the output of
10 PRINT.
To illustrate this approach, here is a program that looks for mazes
with solutions, that is, with a path from one side to the other.
While searching for a path, the program systematically tries every
left-hand and upper entrance into the maze, testing whether this
passage goes through to the other side. As paths are searched,
walls are changed to white. If a solution is found, the maze is
redrawn in its original color with just the solution path redrawn
in white, to allow the user to behold the maze with a solution in
its purity, before randomly generating a new maze to test. If every
path is explored with no solution found, a new maze is generated
and the search begins anew.
10 DIM B1(3),B2(3) : REM 'BOUNCE' ARRAYS
20 B1(0)=2 : B1(1)=3 : B1(2)=0 : B1(3)=1
30 B2(0)=3 : B2(1)=2 : B2(2)=1 : B2(3)=0

40 REM PRODUCE A STABLE MAZE
50 PRINT CHR$(147)
60 FOR I=1024 TO 2023
70 POKE I,77.5+RND(1)
80 NEXT I

90 REM TEST: SOLUTIONS MUST BE PATHS ACROSS WIDTH OR HEIGHT
100 FOR S=0 TO 24
110 X=-1 : Y=S : DIR=1 : XOLD=-1 : YOLD=-1 : WOLD=-1
120 SX=X : SY=Y: SD=DIR
130 GOSUB 410 : GOSUB 520
140 IF X > 39 THEN GOTO 290 : REM FOUND A SOLUTION
150 IF X < 0 OR Y < 0 OR Y > 24 THEN GOTO 180
160 GOSUB 610
170 GOTO 130
180 GOSUB 710 : NEXT S
190 FOR S=0 TO 39
200 X=S : Y=-1 : DIR=3 : XOLD=-1 : YOLD=-1 : WOLD=-1
210 SX=X : SY=Y : SD=DIR
220 GOSUB 410 : GOSUB 520
230 IF Y > 24 THEN GOTO 290 : REM FOUND A SOLUTION
240 IF X < 0 OR Y < 0 OR X > 39 THEN GOTO 270
250 GOSUB 610
260 GOTO 220
270 GOSUB 710 : NEXT S
280 GOTO 50
290 FOR I=55296 TO 56295 : POKE I,14 : NEXT I
300 X=SX : Y=SY : XOLD=-1 : YOLD=-1 : WOLD=-1 : DIR=SD
310 GOSUB 410 : GOSUB 520 : GOSUB 610
320 REM DETERMINE IF WE’RE OFF THE SCREEN
330 IF X >= 0 AND X <= 39 AND Y >= 0 AND Y <= 24 THEN GOTO 360
340 GOSUB 710 : GOSUB 800
350 GOTO 50
360 GOTO 310

400 REM COMPUTE NEW LOCATION BASED ON INITIALDIRECTION
410 IF DIR=0 THEN X=X - 1 : GOTO 450
420 IF DIR=1 THEN X=X + 1 : GOTO 450
430 IF DIR=2 THEN Y=Y - 1 : GOTO 450
440 IF DIR=3 THEN Y=Y + 1
450 RETURN

500 REM BOUNCE OFF CURRENT WALL AS FUNCTION OFDIRECTION
510 REM 77=\, 78=/
520 WALL=PEEK(1024 + X + (Y * 40))
530 IF WALL=77 THEN DIR=B1(DIR) : GOTO 550
540 IF WALL=78 THEN DIR=B2(DIR)
550 RETURN

600 REM DRAW WALKER, RESTORING PREVIOUS WALLCHARACTER
610 GOSUB 710
620 XOLD=X : YOLD=Y : I=X + (Y * 40)
630 M=1024 + I
640 WOLD=PEEK(M)
650 C=55296 + I
660 POKE C, 1 : POKE M, 87
670 RETURN

700 REM RESTORE WALL AT PREVIOUS WALKER LOCATION
710 IF XOLD=-1 THEN GOTO 730
720 POKE 1024 + XOLD + (YOLD * 40), WOLD
730 RETURN

800 FOR I=1 TO 2000 : NEXT I
810 RETURN
The two biggest differences from the initial
“Maze Walker” are the line blocks
100–180 and 190–270. Lines
100–180 systematically set the initial position
to a character on the left-most side of the maze, and the heading
to right. A solution is detected if the walker runs out the
right-hand side of the maze. Lines 190–270 systematically set the
initial position to a character on the top of the maze, and the
heading to down (entering the maze). A solution is detected if the
walker runs out the bottom of the maze. Figure 65.1
provides an example of a maze with no solutions and an example of a
maze that has a solution.
[image: “Maze Walker” can determine whether a maze has solution (top) or not (bottom).]

Figure 60-1. “Maze Walker” can determine whether a maze has solution (top) or not (bottom).


65. CONCLUSION



10 PRINT has generated far more than a pattern that resembles an unending
scrolling maze. It has generated talks, posts, papers, online
conversation, demoscene productions, and now this book. But its
most important product may be the countless programmers inspired by
its concision, enticed by its output, and intrigued by its clever
manipulation of two very simple symbols.
While 10 PRINT is a very particular, historically located object of study, it is not completely unique, precious, or rare. Whether or not new
Commodore 64 owners realized it, a version of the program was
included with every new computer, making it one of the most
commonplace pieces of code of the era. There is no evidence to
suggest that it was considered the best BASIC program, or even the
best one-line BASIC program, for the Commodore 64. Rather,
10 PRINT is emblematic of the creative deluge of BASIC programming in and
around the early 1980s. Many programmers at this time were home
computer users who, in the years when the personal computer was
just emerging as a household technology, seized on programming as a
means of play, learning, and expression.
Yet, as this book has indicated, 10 PRINT resonates.
It is more compelling than many similar Commodore 64 programs,
works better than random-maze-generating programs on other
platforms did, and can be varied and expanded in interesting and
powerful ways. Still, it is only one example of how computers are
used to explore computation and to create beautiful
artifacts. 10 PRINT was selected as the focus of this book not because the program sits at the summit of all possible one-liners in any language and for
any platform, but because the program can lead the way to
appreciating code and the contexts in which it emerges, circulates,
and operates.
Reading this one-liner also demonstrates that programming is
culturally situated just as computers
are culturally situated, which means that the study of code should
be no more ahistorical than the study of any cultural text. When
computer programs are written, they are written using keywords that
bear remnants of the history of textual and other technologies, and
they are written in programming languages with complex pasts and
cultural dimensions, and they lie in the intersection of dozens of
other social and material practices. Behind the ordinary features
of a program — a call to produce random numbers, a
printing mechanism, a repeating loop — lie ghostly
associations with distant and forgotten forms of cultural activity
and production whose voices echo from somewhere inside the
labyrinth of material history accumulated in a particular technology.
Code is not only a conventional semiotic system. At its essence,
code also functions. Code runs. Code does something. Code executes
on the computer and has operational semantics. But code means
things to people as well, both implicitly and explicitly. What this
book has done for a single line of code can be done for much larger
programs as well, for programs of many other sorts. While other
programs and other categories of program have been discussed in
this book, the focus on a single short program has been productive
rather than restricting. We hope this will encourage the detailed
analysis of other short programs and suggest that it is worthwhile
to focus on important subroutines, functions, and procedures within
larger systems of code.
Looking at each token, each character, of a program is a helpful
start, but only a foundation for the understanding of how code
works for individuals and in society. It can show not only why a
particular program functions the way it does but also what lies
behind the computers and programs that are essential to the current
world. In considering the PRINT
keyword and the way it is used in 10 PRINT, it is possible to see that PRINT invokes the CHROUT routine in the Commodore 64’s KERNAL,
that it provides the ability to append text at the current position
(using “;”) and to automatically scroll the screen upward when necessary. This particular behavior is a convenience in many cases and contributes to the visual effect of 10 PRINT. At the same time, 10 PRINT
is a reminder of the history of computer output devices and of
BASIC itself being developed on upward-scrolling Teletypes that
literally printed.
To understand 10 PRINT, it helps to identify the program as a one-liner and to note that it produces a seemingly random maze. Yet, a study of the code itself shows much more about BASIC, the Commodore 64, and the program
itself than does a high-level categorization and description of
function. This is true even though this code does not contain the
easiest hooks for traditional interpretation, such as comments or
variable names. 10 PRINT shows that much can be learned about a program without knowing much of anything about its conditions of creation or intended
purpose — or indeed, without it even having an
intended purpose.
Today, some people who do not mainly identify as
“programmers” nevertheless do program computers; they harness the ability of these machines to do provocative work. This is the case with designers who use
Processing, for instance, and with some who work in HTML, CSS, and
JavaScript to create interesting programs on the Web. But the
widespread access to programming that was provided by early
microcomputers does not exist in the same form today as it did in
the 1970s and 1980s. When people turn on today’s
computers, they do not see a “READY” prompt that allows the user to immediately enter a BASIC program.
The science fiction author David Brin wrote a few years ago on
Salon.com about the difficulty of getting any form of BASIC
running. He reported that he and his son “searched for a simple and straightforward way to get the introductory programming language BASIC to run on either
my Mac or my PC,” but could find none (Brin 2006).
There are BASICs available now, including Microsoft Small Basic,
explicitly intended to embrace the spirit of the original language.
But in the early twenty-first century, such tools are still
somewhat esoteric specialty items, not standard features of every
home computer that make themselves available upon
startup.
For popular programming, the early 1980s were certainly a special
time. Computers were more difficult to use in some ways. The
Commodore 64 required its users to issue complex commands to read a
disk and run a program from it. But programming was easier. Over
the past two decades, academic and industrial research labs have
attempted to invent or apply simple programming tools for
educational purposes, to teach anyone how to program at a
rudimentary level. On the one hand, this book reminds us that a
straightforward way for people to program their
computers — either in BASIC or another simple
language — is indeed possible, since it has
already been achieved. But on the other hand, it also accentuates
the many significant differences in the way computers are designed
and used today compared to the heyday of the Commodore 64,
differences that help explain why researchers
can’t simply recommend that interested parties
buy an inexpensive home computer, turn it on, and experiment with
it.
Computer programs can be representational; they can depict worldly
things and ideas, and they can resonate with related figures,
images, and designs. In the case of 10 PRINT,
the program’s mazelike output is not a neutral
pattern, but one wrapped up in numerous contradictory Western ideas
about the notion of a maze. Whether a program’s
representations are incidental or very deliberate, they have a
meaning within culture. The cultural history of the maze
demonstrates that there are more and less obvious associations with
this type of structure, some wrapped up with the history of science in the twentieth century and others emerging from
computing itself. Although a program’s output is
only one of its aspects, a reading of code should certainly take
into account what a program does and what texts, images, and sounds
it produces.
While 10 PRINT is a text, it exists in the material context of computing. It was printed (in different versions) first in a spiral-bound manual and
later in a glossy magazine. It ran on a particular taupe unit, the
Commodore 64, the components of which were influenced by economic
circumstance and the physical possibilities of chip design and
selection. The BASIC programming language in which
10 PRINT is written was shaped by the sharing of programs in print and in
human memory, and by the specific technical aspects of the Altair
8800 and the Dartmouth Time-Sharing System. Our discussion
of 10 PRINT has tried to account for these relevant material qualities
while also attending to the formal, computational nature of the
code — what it does — and how that interacts with material, historical, and other cultural aspects of the program.
All programs are written in particular settings (a corporate
office, a computer clubhouse, a university, a coffeehouse) and are
influenced by the means by which they are written. Whenever code is
considered, it is worthwhile to investigate how it was written and
what material factors came into play as it was transmitted, shared,
and elaborated. As with the Teletypes that preceded computers like
the Commodore 64 and the laptops that eventually replaced them, the
physical makeup, cost, contexts of use, and physical form of
computers have significant effects on how they are put to
use.
People tend to imagine computer programs as largely static, frozen
masses of code. To the extent that this view is valid at all, it
makes sense only within a small slice of computing history. It is true, for instance, that the retail market for shrink-wrapped software and the sale of videogames on cartridges tend to support the view that a program is a particular, stable sequence of code and nothing else.
Of course, this era has passed. Software of all sorts, including
videogames, is distributed on systems that can and frequently do
patch and update programs. Download a mobile phone app or even a
Playstation 3 game that is initially free of advertisements and,
after running an update, the program can start downloading and
displaying ads while it runs. People now think little of
modifications of their software, even those that are intrusive and
annoying. At the same time, today’s operating
systems are easily patched online to prevent security problems and to add
new features, bringing benefits to users.
The view of programs as static is even less tenable when one
considers the writing, running, and distribution of programs
throughout the history of computing. Custom software written for
businesses has long been maintained and
updated — for half a century. The BASIC programs
people keyed in from magazines invited users to modify them. In
educational and software development settings programs have
typically been converted to other programs by elaboration and
modification.
10 PRINT is not just a line of code; it defines a space of possible variations (some of which were explored in the remark Variations in BASIC),
possible ports (see the remark Ports to Other Platforms and other
ports throughout the book), and possible elaborations (such as the
one described in the remark Maze Walker in BASIC).
10 PRINT can simply be run, but it can also be considered as an instant in
the process of programming, a process that can lead to a better
understanding of and relationship with computation, in addition to
leading to other aesthetically interesting and differently
functioning programs. This book has tried to establish
10 PRINT not just as a program, but also as part of the process of learning
about and developing programs — something that can
be said about almost any code.
Since programs are dynamic, and some of them explicitly invite
modification, and since modifying programs is a way to better
understand them, the platform, and computing generally, why not
modify a program as part of a scholarly investigation of the
program? This is one approach taken in this book. The variations,
ports, and elaborations in this volume set some of the qualities of
the canonical 10 PRINT into relief in an interesting and informative way.
To see what is special about different platforms, and how platforms
differ from one another, we have produced ports of
10 PRINT during our investigation of it and the writing of this book.
Porting a specific program makes for a very different and more
revealing comparison than does simply lining up the technical specs
of the two systems for side-by-side comparison. It shows what
specific qualities of a platform are important for particular
effects and for the functioning of particular programs. Similarly,
developing variations allows programmers to explore the space of
possibility within a platform. In all of these cases, programming
is not a dry technical exercise but an exploration of aesthetic, material, and formal qualities.
Whether one is studying a videogame, some other aesthetic object,
or code that runs a voting machine or defines a climate change
model, writing programs can help us comprehend the code and its
cultural relevance. In the case of large systems, it could be
unwieldy to re-implement and modify the entire program. This
approach, however, is being tried with the story generator MINSTREL
(Tearse, Mateas, and Wardrip-Fruin 2010), explicitly for the
purpose of better understanding that influential system and how it
tells stories. It is possible to reimplement and modify important
routines, functions, and procedures, to grasp more firmly what a
program does as opposed to what it could have been written to do.
Analyzing the code by interacting with it, revising it, and porting
it is one of the main critical activities this book contributes to
critical code studies and related fields in digital
media.
Early on, a variant of 10 PRINT was presented to novice readers to hint at the tremendous potential of the computer using a simple but elegant technique. This book is meant to serve a similar function. Through its many approaches to a one-line program, the book is meant to unlock the potential for
analyzing digital objects and culture through code.
70. END




75. THANKS



We wish to thank those at the MIT Press who supported this radical
and challenging project — particularly Doug Sery,
who saw the potential of the project from the beginning and worked
with the team of authors to help them complete it. We also thank
Katie Helke Dokshina, the anonymous reviewers who offered their
consideration and advice, and Noah Wardrip-Fruin, who worked with us as an editor
of the Software Studies series. Finally, thanks go to Kathy Caruso
for seeing the book through into print.
Many programs are considered in this book. Some of these we found,
some we wrote ourselves. A few programs are
in a different category: they were prompted by this book project,
but programmers who were not authors of the book worked on them.
Our thanks to Ben Fry for the second Processing port that was
discussed, to Stéphane Hockenhull for collaborating
with two of the authors on “threadbare” and
“thread,” and to Warren Sack for his Perl and Javascript ports, the first ports discussed in the book
and the ones that introduced us to the idea of porting
10 PRINT
as a way of better understanding it.
80. WORKS CITED



Ahl, David. 1973. 101 BASIC Computer Games.
Maynard, MA: Digital Equipment Corporation.
Ahl, David. 1978. BASIC Computer Games: Microcomputer Edition. Morristown, NJ: Creative Computing Press.
Altair BASIC Reference Manual. 1975. Albuquerque, NM: MITS.
Atari Inc. v. North American Philips Consumer ElectronicsCorp., 672 F.2d 607 (7th Cir.) (full-text), cert. denied, 459 U.S. 880
(1982).
Bagnall, Brian. 2010. Commodore: A Company on the Edge.
Winnipeg, Canada: Variant Press.
Barthes, Roland. 1977. “From Work to Text.” Image, Music, Text.
Trans. Stephen Heath. London: Fontana. http://evans-experientialism.freewebspace.com/barthes05.htm
Bauer, Christian. 1996. “The MOS 6567/6569 Video Controller (VIC-II) and Its
Application in the Commodore 64.” cebix.net. August 28. http://www.cebix.net/VIC-Article.txt
Benjamin, Walter. 1999. The Arcades Project. Ed. Rolf Tiedemann. Trans.
Howard Eiland and Kevin McLaughlin. Cambridge, MA: Belknap-Harvard University Press.
Bennett, Deborah. 1998. Randomness. Cambridge, MA: Harvard University Press. Bergin, Thomas J., ed. 2000. Fifty Years of Army Computing. Aberdeen, MD:
U.S. Army Research Laboratory.
“Better Mouse: A Robot Rodent Masters Mazes.” 1952. Life 32, no. 4 (July 28): 45–46.
Bogost, Ian. 2010. Comment on “Program Your Apple II! Why Not Program
Today?” Computing Education Blog. February 20. http://computinged.wordpress.com/2010/02/20/program-your-apple-ii-why-not-program-today/
Brandon, Ruth. 1999. Surreal Lives: The Surrealists 1917–1945.
London: Macmillan.
Brecht, George. 1966. Chance Imagery. A Great Bear Pamphlet. New York: Something Else Press. Brett, Guy, and Marc Nash. 2000. Force Fields: An Essay on the Kinetic. Barcelona: Actar.
Brin, David. 2006. “Why Johnny Can’t Code.” Salon.com. September 14. http://www.salon.com/2006/09/14/basic_2/ Brooks, Ruven. 1983. “Towards a Theory of the Comprehension of Computer Programs.” International Journal of Man-Machine Studies 18: 543–554.
Buckley, Kerry W. 1989. Mechanical Man: John Broadus Watson and the Beginnings of Behaviorism. New York: Guilford Press.
Burroughs, William S. 2003. “The Cut-Up Method
of Brion Gysin.” In The New Media Reader,
ed. Noah Wardrip-Fruin and Nick Montfort, 90–91.
Cambridge, MA: MIT Press.
Cabanne, Pierre. 1971. Dialogues with Marcel Duchamp.
New York: Viking.
Cage, John. 1966. Silence.
Cambridge, MA: MIT Press.
Caillois, Roger. 2003. Man, Play, and Games.
Trans. Meyer Barash. New York: The Free Press.
Campbell-Kelly, Martin, and William Aspray. 1996. Computer: A History of The Information Machine.
New York: Basic Books.
Chun, Wendy. 2011. Programmed Visions: Software and Memory.
Cambridge, MA: MIT Press.
Commodore. 1982. Commodore 64 Programmer’s Reference Guide.
Wayne, PA; Indianapolis, IN: Commodore Business Machines.
Distributed by Howard W. Sams & Co.
Commodore. 1982. Commodore 64 User’s Guide.
Wayne, PA; Indianapolis, IN: Commodore Business Machines.
Distributed by Howard W. Sams & Co.
Commodore Computer Club. 2010. “Video: Commodore
VIC-20 Ad with William Shatner.” November 17.
http://www.commodorecomputerclub.com/video-commodore-vic-20-ad-with-william-shatner/
da Cruz, Frank. 2011. “Programming the
ENIAC.” Columbia University Computing History.
January 25, updated April 2, 2012.
http://www.columbia.edu/acis/history/eniac.html
Dartmouth College Computation Center. 1964. BASIC.
October 1. http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf.
Davenport, Nancy. 2002. “Artist Questionnaire:
21 Responses.” October 100: 65–67.
Doctorow, Cory. 2002. “0wnz0red.” Salon.com. August 28.
http://www.salon.com/2002/08/28/0wnz0red/
Doob, Penelope Reed.
1990. The Idea of the Labyrinth: from Classical Antiquity through theMiddle Ages. Ithaca and London: Cornell University Press.
Doüat, Dominique. 1722. Methode pour faire une infinité de desseins differensavec des carreaux mi-partis de deux couleurs par une lignediagonale: ou observations du Père Dominique Doüat Religieux Carmes de la Province de Toulouse sur un memoireinséré dans l’Histoirede l’Académie Royale des Sciencesde Paris l’année 1704,présenté par le Reverend SebastienTruchet, religieux du même ordre, Académicienhonoraire. Paris: Chez Florentin de Laulne . . . Claude Jombert . . . [et] André Cailleau.
Dreiser, Theodore. 1981. Sister Carrie.
New York: Penguin.
Driscoll, Kevin. 2010. “Critical Code Studies
2010.” Driscollwiki. July 23. http://kevindriscoll.org/wiki/Critical_code_studies_2010
Driscoll, Kevin. 2011. “Revisiting Bill
Gates’ ‘Open Letter to Hobbyists.’” Media in Transition 7,
MIT, Cambridge, MA, May 14.
Duchamp, Marcel. 1975 Salt Seller: The Essential Writings of Marcel Duchamp. Ed. Michel Sanouillet and Elmer Peterson. London: Thames and
Hudson.
Dyson, George. 1997. Darwin among the Machines: The Evolution of Global Intelligence. Reading, MA: Addison-Wesley.
Essinger, James. 2004. Jacquard’s Web: How a Hand-Loom Led to the Birthof the Information Age. Oxford: Oxford University Press.
Evans, Davis S., Andrei Hagiu, and Richard Schmalensee. 2006. Invisible Engines: How Software Platforms Drive Innovation and Transform Industries. Cambridge, MA: MIT Press.
Fabre, Gladys, and Doris Wintgens Hotte, eds. 2009.Constructinga New World, Van Doesburg & The International Avant-Garde. London: Tate Publishing.
Faison, Seth. 1992. “John Kemeny, 66, Computer Pioneer and Educator.” The New York Times. December 27. http://www.nytimes.com/1992/12/27/us/john-kemeny-66-computer-pioneer-and-educator.html
Foltin, Martin. 2011. “Automated Maze Generation and Human Interactions.”
Master’s thesis. http://is.muni.cz/th/143508/fi_m/thesis.pdf
Freiberger, Paul. 1982. “Commodore Founder Tramiel: PETs for World
Market.” InfoWorld 4, no. 16 (April 26): 13.
Fuchs, Martin. 2011. Written Images. Rendered February 9. Book number 182/230, page 161.
Fuegi, John, and Jo Francis. 2003. “Lovelace & Babbage and the Creation of the 1843 ‘Notes.’” IEEE Annals of the History of Computing
25, no. 4 (October–December): 16–26.
Gates, Bill. 1976a. “An Open Letter To
Hobbyists.” Homebrew Computer Club Newsletter
2, no. 1 (January): 2.
Gates, Bill. 1976b. “A Second and Final
Letter.” Computer Notes
1, no. 11 (April): 5.
Gerdes, Paul. 1998. Women, Art and Geometry in Southern Africa.
Trenton, NJ: Africa World Press.
Gere, Charlie. 2006. “Genealogy of the Computer Screen.”
Visual Communication 5, no. 2 (June): 141–152.
Gerstner, Karl. 1964/2009. “Designing Programmes.” Graphic Design Theory: Readings from the Field,
ed. Helen Armstrong, 58–61. Princeton, NJ:
Princeton Architectural Press.
Gilbert, Sandra, and Susan Gubar. 2000. The Madwoman in the Attic: The Woman Writer and the Nineteenth-Century Literary Imagination.
2nd ed. New Haven, CT: Yale University Press.
Gombrich, E. H. 1994. The Sense of Order: A Study in the Psychology of DecorativeArt. 2nd ed. Oxford: Phaidon Press.
Green Jr., Bert F., J. E. Keith Smith, and Laura Klem. 1959.
“Empirical Tests of an Additive Random Number
Generator.” Journal of the ACM (JACM)
6, no. 4: 527–537.
Hayles, N. Katherine. 2005. “Speech, Writing,
Code: Three Worldviews.” In My Mother Was a Computer: Digital Subjects and Literary Texts, 39–61. Chicago: University of Chicago
Press.
Heim, Kristi. 2008. “Seattle Man Who Helped
Launch Microsoft Left $65M for Gay Rights.”
Seattle Times.
February 24. http://seattletimes.nwsource.com/html/localnews/2004197961_weiland24.html
Holmes3000. 2006. “Commodore 64 Commercial
(1985).” YouTube.
May 31. http://www.youtube.com/watch?v=D_f3uIzEIxo
Huang, Xiu Wu, Cheryl Kolak Dudek, Lydia Sharman, and Fred E Szabo.
2005. “From Form to Content: Using Shape
Grammars for Image Visualization.” Proceedings of the Ninth International Conference on InformationVisualisation,
London, July 6–8.
Hubbard, Paul L. 1987. “$3B2 Checking Monitor Resolution.” “Magic” section, RUN  39 (March): 10, 12.
Inacio da Silva, Cicero. 2008.
“Software Arte,” slide 17.
SlideShare. November 18.
http://www.slideshare.net/cicerosilva/software-arte-presentation
Kemeny, John G. 1972. Man and the Computer.
New York: Simon & Schuster.
Kemeny, John G., and Thomas E. Kurtz. 1985. Back to BASIC: The History, Corruption, and Future of the Language.
Boston: Addison-Wesley.
Kern, Hermann. 2000. Through the Labyrinth: Designs and Meanings over 5,000Years. Trans. [from German] Abigail H. Clay with Sandra Burns Thomson and
Kathrin A. Velder. Munich and New York: Prestel.
Kidd, David. 2011. Backstrip.net. April 8.
http://backstrip.net/post/4432566244/ive-been-tooling-around-with-street-making
Kidware Software, LLC. 2011. “Small Basic Computer Games: New 2010 Small Basic Edition.” http://computerscienceforkids.com/SmallBasicComputerGames.aspx
Kittler, Friedrich. 1995. “There Is No
Software.” CTheory.
http://www.ctheory.net/articles.aspx?id=74
Knuth, Donald E. 1969. The Art of Computer Programming,
vol. 2. Reading, MA: Addison-Wesley.
Kominski, Robert. 1991. “Computer Use in the
United States: 1989.” U.S. Bureau of the Census Current
Population Reports, Series P-23, No. 171. U.S. Government Printing
Office, Washington, DC.
Kominski, Robert, and Eric Newburger. 1999.
“Access Denied: Changes in Computer Ownership
and Use: 1984–1997.” American Sociological Association, Chicago, Illinois, August 6–10.
Krauss, Rosalind. 1979. “Grids.” October 9 (Summer): 50–64.
Krueger, Dan A. 1984. “Trick $93.”
“Magic” section, RUN 7 (July): 13–14.
Krumins, Peteris. 2009–2011.
“Perl One-Liners Explained.”
http://www.catonmat.net/series/perl-one-liners-explained
Kurtz, Thomas E. 2009. “‘BASIC’ [Interview].” In Masterminds of Programming: Conversations with the Creators of Major Programming Languages,
ed. Federico Biancuzzi and Shane Warden, 79–100. Sebastopol, CA: O’Reilly Media.
Langway, Lynn. 1981. “Invasion of the Video Creatures.” Newsweek,
November 16.
Latham, Aaron. 1981. “Video Games Star
War.” The New York Times,
October 25, Late City Final edition, sec. 6.
Lemov, Rebecca. 2005. World as Laboratory: Experiments with Mice, Mazes, and Men. New York: Hill and Wang.
Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution.
New York: Dell.
Lipton, Richard J., and Lawrence Snyder. 1977.
“On the Power of Applicative
Languages.” Research Report 94, Department of Computer
Science, Yale University.
Lord Ronin. 2008. “In the Beginning Part
8.” Commodore Free Magazine.
September. http://commodorecomputerclub.co.uk/view.php?art=commodore_free_23&loc=magazine
Lutz, Theo. 1959/2005. “Stochastic
Texts.” Trans. Helen MacCormac,
“Stochastische Texte.” Augenblick
4, no. 1: 3–9. http://www.stuttgarter-schule.de/lutz_schule_en.htm
Mac Low, Jackson. 2009. Thing of Beauty: New and Selected Works.
Ed. Anne Tardos. Berkeley: University of California Press.
Malaby, Thomas M. 2003. Gambling Life: Dealing in Contingency in a Greek City. Urbana: University of Illinois Press.
Malone, Meredith. 2009. Chance Aesthetics.
St. Louis, MO: Mildred Lane Kemper Art Museum.
Manovich, Lev. 2009. “Cultural Analytics.” Software Studies Initiative. June 20, updated September 2011. http://lab.softwarestudies.com/2008/09/cultural-analytics.html
Marino, Mark C. 2006. “Critical Code
Studies.” Electronic book review. December 4.
http://www.electronicbookreview.com/thread/electropoetics/codology
Marino, Mark C. 2010. “The ppg256 Perl Primer:
The Poetry of Techneculture.” Emerging Language Practices,
no. 1. (Fall).
http://epc.buffalo.edu/ezines/elp/issue-1/ppg256.php
Mateas, Michael, and Nick Montfort. 2005. “A
Box, Darkly: Obfuscation, Weird Languages, and Code
Aesthetics.” In Proceedings of the 2005 Digital Arts and Culture Conference, 144–153. Denmark: IT University of
Copenhagen.
Matthews, William Henry. 1922. Mazes and Labyrinths: A General Account of Their History and Developments.
New York: Longmans, Green.
McDonnell, Eugene E. 1988. “Life: Nasty,
Brutish, and Short.” APL’88 Conference Proceedings,
242–247. Sydney, Australia, February 15.
Menabrea, L. F. 1842. “Sketch of the Analytical
Engine Invented by Charles Babbage.” Trans. and notes
by Ada Augusta, Countess of Lovelace. From Bibliothèque Universelle de Genève 82 (October 1842). Web edition, 2006.
http://www.fourmilab.ch/babbage/sketch.html
Michel, Jean-Baptiste, et al. 2010.
“Quantitative Analysis of Culture Using Millions
of Digitized Books.” Science
331, no. 6014: 176–182. Published online
December 16. doi: 10.1126/science.1199644.
http://www.sciencemag.org/content/early/2010/12/15/science.1199644.abstract
Miller, George A. 1956. “The Magical Number
Seven, Plus or Minus Two.” Psychological Review
63 (2): 81–97. doi:10.1037/h0043158.
Mohr, Manfred. 2007. Manfred Mohr: Broken Symmetry.
Ed. Wulf Herzogenrath, Barbara Nierhoff, and Ingmar
Lähnemann. Bremen: Kunsthalle Bremen.
Montfort, Nick. 2004. “Continuous Paper: The
Early Materiality and Workings of Electronic
Literature.” Modern Language Association (MLA)
Convention, Philadelphia, December 28.
Montfort, Nick. 2008. “Obfuscated
Code.” In Software Studies: A Lexicon,
ed. Matthew Fuller, 193–199. Cambridge, MA: MIT
Press.
Montfort, Nick. 2009. “The ppg256 Series of
Minimal Poetry Generators.” Proceedings of the Digital Arts and Culture Conference,2009. UC Irvine, December 14. http://escholarship.org/uc/item/4v2465kn
Montfort, Nick. 2010. “Random Mazes.” Code Critiques. Critical Code
Studies Working Group. February 5. Unpublished online
discussion.
Montfort, Nick. 2010. “@party: Weaving thread.” Post Position. June 20. http://nickm.com/post/2010/06/party-weaving-thread/
Montfort, Nick. 2010. “Colloquium Past, Conference to Come in Mexico.” Post Position. November 17.
http://nickm.com/post/2010/11/colloquium-pastconference-to-come-in-mexico/
Montfort, Nick. 2011. “10 PRINT Talks Galore.” Post Position.
January 26. http://nickm.com/post/2011/01/10-print-talks-galore/
Montfort, Nick, and Ian Bogost. 2009. Racing the Beam: The Atari Video Computer System. Cambridge, MA: MIT Press.
Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy
Douglass, Mary Flanagan, Mark Marino, Michael Mateas, Casey Reas, Warren Sack,
Mark Sample, and Noah Vawter. 2010. “Studying
Software by Porting and Reimplementation: A BASIC Case.” Presented by Nick
University of Southern California. July 23.
http://thoughtmesh.net/publish/382.php
Moretti, Franco. 2007. Graphs, Maps, Trees: Abstract Models for Literary History. New York: Verso.
Motherwell, Robert, and Jack D. Flam. 1989. The Dada Painters and Poets: An Anthology. Cambridge, MA: Harvard University Press.
“Mouse with a Memory.” 1952. Time 59, no. 20 (May 19).
Mullish, Henry. 1976. A Basic Approach to BASIC.
New York: John Wiley & Sons.
MuppetMan et al. 2010. “Maze Code” discussion thread,
Commodore 64 (C64) Forum, Lemon64.com. August 12–16.
http://www.lemon64.com/forum/viewtopic.php?t=34879&sid=9526087188346ea3450fe0568566466b
Nake, Frieder. 2008. Personal communication, via email, with Casey Reas. August 18.
Nelson, Philip I. 1987. “Exploring the SID
Chip.” Compute! Gazette (August): 22–24.
noknojon. 2011. Bleepingcomputer.com. February 17, 8:01 p.m.
http://www.bleepingcomputer.com/forums/topic380106.html/pagep2138153#entry2138153
Noll, Michael A. 1962. “Patterns by 7090.” Bell Telephone
Laboratories Technical Memorandum, MM-1234-14, August
28.
Noll, Michael A. 1970. “Art Ex Machina.” IEEE Student Journal
8, no. 4: 10–14.
Olivarez-Giles, Nathan. 2011. “Commodore 64 Is
Back, With the Same Ol’ Look But Modern
Insides.” Los Angeles Times.
April 7. http://latimesblogs.latimes.com/technology/2011/04/commodore-64-is-back-with-hdmi-out-intel-atomchip-blu-ray.html
Orlowski, Andrew. 2001. “Microsoft Altair BASIC Legend Talks about Linux, CPRM and That Very Frightening Photo: A Very Rare Interview with Monte David off.”
The Register. May 11. http://www.theregister.co.uk/2001/05/11/microsoft_altair_basic_legend_talks/
“Out of the Woods.” 1962. Time 80, no. 21 (November 23)
http://www.time.com/time/magazine/article/0,9171,829487-1,00.html
Pearson, Lisa. 2011. It Is Almost That: A Collection of Image+Text Work by Women Artists & Writers. Los Angeles: Siglio Press.
Pfeiffer, John E. 1962. The Thinking Machine. Philadelphia, PA: Lippincott.
Raley, Rita. 2006. “Code.surface || Code.depth.”
Dichtung-Digital 36. http://www.dichtung-digital.org/2006/1-Raley.htm
RAND Corporation. 1955. A Million Random Digits with 100,000 Normal Deviates. http://www.rand.org/pubs/monograph_reports/MR1418/index2.html
“random, n., adv., and adj.” 2011. OED Online.
June. Oxford University Press. [Subscription-only electronic
resource.]
Rapp, Larson. 1985. “$1C1 April Fool’s Program.” “Magic” section, RUN
16 (April): 8.
Reas, Casey. 2010. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10. Twitter. July 25. https://twitter.com/-!/REAS/status/19475597776
Reinfurt, David. 2009. “Six Prototypes for a
Screensaver: A Retroactive History.” Thinking for a Living,
http//www.thinkingforaliving.org/archives/5465 (part 1)
http://www.thinkingforaliving.org/archives/5466 (part 2).
Resnick, Mitchel, Brian Silverman, Yasmin Kafai, John Maloney,
Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, and Jay Silver. 2009. “Scratch: Programming for
All.” Communications of the ACM 52, no. 11: 60–67. Scratch Documentation Site, MIT, Cambridge, MA.
http://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf
Rettberg, Jill Walker. 2011. “10 PRINT CHR$(205.5+RND(1)); : GOTO 10.”
Flickr. February 9. http://www.flickr.com/photos/lij/5431033237/
Roberts, H. Edward, and William Yates. 1975. “Altair 8800 Minicomputer.”
Popular Electronics 7, no. 1 (January): 33–38.
Rose, Barbara. 1991. Art-as-Art, The Selected Writings of Ad Reinhardt.
Berkeley: University of California Press.
Rotenberg, A. 1960. “A New Pseudorandom Number Generator.” Journal of the ACM (JACM) 7, no. 1: 75–77.
Rotman, Brian. 1987. Signifying Nothing: The Semiotics of Zero.
Palo Alto, CA: Stanford University Press.
Salen, Katie, and Eric Zimmerman. 2004. Rules of Play: Game Design Fundamentals. Cambridge, MA: MIT Press.
Selfridge, R. G. 1977. “Fun and Games, Good and Bad, with APL.” In ACM-SE 15 Proceedings of the 15th Annual Southeast Regional Conference,
238–244. New York: ACM.
Shneiderman, Ben. 1976. “Exploratory Experiments in Programmer Behavior.” International Journal of Computer and Information Sciences 5, no. 2: 123–143.
Singer, Susanna, ed. 1984. Sol LeWitt Wall Drawings1968–1984.
Amsterdam: Stedelijk Museum. Smith, Adam. 2010. “the infamous c64 maze generator.” Flickr. October 6. http://www.flickr.com/photos/rndmcnlly/5058442151/
Smith, Cyril Stanley, and Pauline Boucher. 1987.
“The Tiling Patterns of Sebastien Truchet and the Topology of Structural Hierarchy.” Leonardo 20, no. 4: 373–385.
Steil, Michael. 2011. “How Many Commodore 64
Computers Were Really Sold?” pagetable.com. February 1. http://www.pagetable.com/?p=547
Strachey, Christopher. 1954. “The ‘Thinking’ Machine.” Encounter
3, no. 4 (October): 25–31.
Swaine, Michael. 2006. “Dr. Dobb’s Journal @ 30.” Dr. Dobb’s: The World of Software Development. January 1. http://drdobbs.com/architecture-and-design/184406378
Tearse, Brandon, Michael Mateas, and Noah Wardrip-Fruin. 2010.
“MINSTREL Remixed: A Rational Reconstruction.” In INT3 ’10: Proceedings of the Intelligent Narrative Technologies III Workshop,
1–7 New York: ACM.
th0ma5w. 2011. “10 PRINT CHR$(205.5+RND(1)); : GOTO 10.” YouTube. July 23.
“As demonstrated by Casey Reas at the Eyeo
Festival, June 2011, Minneapolis, Minnesota, a random maze
generation program in one line of Commodore 64 Basic.”
http://www.youtube.com/watch?v=m9joBLOZVEo
Thomas, Douglas. 2002. Hacker Culture.
Minneapolis: University of Minnesota Press.
TIOBE Software BV. 2012. “TIOBE Programming
Community Index for January 2012.” TIOBE Software.
January 8.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
Tribble, David. 2005. “Go To Statement Considered Harmful: A
Retrospective.” david.tribble.com.
Revision 1.1, November 27.
http://david.tribble.com/text/goto.html
U.S. Bureau of the Census. 1988. “Who Uses a
Computer?” Statistical Brief SB-2 88.
U.S. Government Printing Office, Washington, DC.
von Neumann, John. 1961. “Various Techniques
Used in Connection with Random Digits.” In
Collected Works: Design of Computers, Theory of Automata and Numerical Analysis, vol. 5, ed. A. H. Taub, 768–769. Oxford:
Pergamon Press.
Waldrop, M. Mitchell. 2001. The Dream Machine: J.C.R. Licklider and the Revolution That Made Computing Personal. New York: Viking. Wallace, James, and Jim Erickson. 1992. Hard Drive: Bill Gates and the Making of the Microsoft Empire. New York: Wiley.
Wardrip-Fruin, Noah. 2005. “Christopher Strachey: The First Digital Artist?”
Grand Text Auto blog. August 1.
http://grandtextauto.org/2005/08/01/christopher-strachey-first-digital-artist/
Weinberger, Eliot, and Octavio Paz. 1987. Nineteen Ways of Looking at Wang Wei: How a Chinese Poem Is Translated. Mount Kisco, NY: Moyer Bell.
Widenbeck, Susan. 1986. “Beacons in Computer Program Comprehension.” International Journal of Man–Machine Studies 25: 697–709.
Wright, Craig M. 2001. The Maze and the Warrior: Symbols in Architecture, Theology and Music. Cambridge, MA: Harvard University Press.
Zelevansky, Lynn. 2004. Beyond Geometry: Experiments in Form, 1940s–1970s.
Cambridge, MA: MIT Press.
Zemanek, H. 1976. “Computer Prehistory and History in Central Europe.” In
AFIPS’76 Proceedings of the June7–10, 1976, National Computer Conference and Exposition, 15–20. New York: ACM.
Zlokower, Roberta. 2005. “Martha Graham Dance
Company: Errand into the Maze, El Penitente, Sueno, Sketches from
Chronicle.” Roberta on the Arts. April 17. http://www.robertaonthearts.com/dance/Martha%20Graham%20Dance%20Company%20Errand%20into%20the%20Maze,%20El%20Penitente,%20Sueno,%20Sketches%20from%20Chronicle.html
85. VARIANTS OF 10 PRINT



While the specific line of code
10 PRINT CHR$(205.5+RND(1)); : GOTO 10
is the focus of this book, and
has been treated as canonical, this program is not a simple
transcription of some authoritative version. The authors of this
book developed this variant of the program in an attempt to
represent many of the common features of a BASIC one-liner and to
embody aspects of the earliest two variants that we found. Variants
of this maze-generating code have appeared in print and other
contexts over the course of the Commodore 64’s
commercial lifetime and beyond. Some of these variants are
addressed in the chapters and remarks; others are listed only here.
The following variants of 10 PRINT
may differ in length, line numbering, and character codes used, but
they are all meant to produce the same output. These are all the
variants the authors are aware of as of May 2012, with full
bibliographic information for each known appearance of each of
them. (After this book first went to press, we learned of an earlier
printed variant in the 1981 book Personal Computing on the VIC 20.)
VARIANT 1982



10 PRINT "[CLR/HOME]"
20 PRINT CHR$(205.5 + RND(1));
40 GOTO 20
Commodore, Inc. 1982. Commodore 64 User’s Guide.
Wayne, PA and Indianapolis, IN: Commodore Business Machines. Distributed
by Howard W. Sams & Co. p. 53.

VARIANT 1984



8 PRINT CHR$(205.5 + RND(8)); : GOTO 8
Krueger, Dan A. 1984. “Trick $93.”
“Magic” section, RUN 7 (July): 13–14.
[image: A three-line variant of 10 PRINT in the Commodore 64 User’s Guide, 1982.]

Figure 85-1. A three-line variant of 10 PRINT in the Commodore 64 User’s Guide, 1982.

A one-line variant of 10 PRINT (upper left) in the “Magic” section of RUN 7,. July 1984.
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VARIANT 2008A
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VARIANT 2008B
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surrounding article, however.
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VARIANTS 2010C–F



1 printchr$(205.5+rnd(1));:goto1
1 ?chr$(205.5+rnd(1));:run
1?chr$(205.5+rnd(1));:rU
0?cH(205.5+rN(1));:gO
MuppetMan et al. 2010. “Maze Code” discussion thread, Commodore 64 (C64) Forum, Lemon64.com. August 12–16.
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VARIANT 2010G



10 print chr$(205.5 + Rnd(1));
20 goto 10
Smith, Adam. 2010. “the infamous c64 maze generator.” Flickr. October 6.
http://www.flickr.com/photos/rndmcnlly/5058442151/

VARIANT 2011a



10 PRINT CHR$(205.5+RND(1)) GOTO 10
Fuchs, Martin. 2011. Written Images.
Rendered February 9. Book number 182/230, page 161.
This is printed as the title of Casey Reas’s
contribution to this volume, seven pages of white, blue, and black
images generated with a Processing program that is inspired
by 10 PRINT. The semicolon and
colon, which are necessary for the program’s
proper functioning and its validity as BASIC, were removed in error
during editing in this limited-edition book. This title is also
presented this way on page 1 of Written Images,
in the table of contents.

VARIANT 2011b



10 PRINT "(It indicates that here you press Shift and
CLR/Home Keys" I found my 7 key has Home on it -)"
note the " marks at start and end
20 PRINT CHR$(205.5+RND(1))
30 PRINT GOTO 20
noknojon. 2011. Bleepingcomputer.com. February 17, 8:01
p.m. http://www.bleepingcomputer.com/forums/topic380106.html/pagep2138153#entry2138153
Entering and running this program as it appears above will cause it
to terminate abnormally with the message “?
SYNTAX ERROR IN 30.” Two changes need to be made for
this code to function as intended: a semicolon should be added at
the end of line 20 and “PRINT”
should be removed from line 30.
In addition, this text indicates that one should hold SHIFT and
then press the CLR/HOME key. This causes the screen to be cleared
when the program is run and it moves printing of characters to the
upper left. If CLR/ HOME is pressed without holding SHIFT, as the
1982 and 2008b variants seem to suggest one should do, the printing
of characters will move to the upper left but the display will not
be cleared, so the maze will move downward to cover whatever is
already on the screen.
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[image: From left to right and top to bottom, the 10 PRINT program is typed into the Commodore 64 and is run. Output scrolls across the screen until it is stopped.]

Figure 95-1. From left to right and top to bottom, the 10 PRINT program is typed into the Commodore 64 and is run. Output scrolls across the screen until it is stopped.

Computer programs process and display critical data, facilitate
communication, monitor and report on sensor networks, and shoot
down incoming missiles. But computer code is not merely functional.
Code is a peculiar kind of text, written, maintained, and modified
by programmers to make a machine operate. It is a text nonetheless,
with many of the properties of more familiar documents. Code is not
purely abstract and mathematical; it has significant social,
political, and aesthetic dimensions. The way in which code connects
to culture, affecting it and being influenced by it, can be traced
by examining the specifics of programs by reading the code itself
attentively.
Like a diary from the forgotten past, computer code is embedded
with stories of a program’s making, its purpose,
its assumptions, and more. Every symbol within a program can help
to illuminate these stories and open historical and critical lines
of inquiry. Traditional wisdom might lead one to believe that
learning to read code is a tedious, mathematical chore. Yet in the
emerging methodologies of critical code studies, software studies,
and platform studies, computer code is approached as a cultural
text reflecting the history and social context of its creation.
“Code . . . has been inscribed, programmed,
written. It is conditioned and concretely historical,”
new media theorist Rita Raley notes (2006). The source code of
contemporary software is a point of entry in these fields into much
larger discussions about technology and culture. It is quite
possible, however, that the code with the most potential to incite
critical interest from programmers, students, and scholars is that
from earlier eras.
This book returns to a moment, the early 1980s, by focusing on a
single line of code, a BASIC program that reads simply:
10 PRINT CHR$(205.5+RND(1)); : GOTO 10
One line of code, set to repeat endlessly, which will run until
interrupted (Figure 95-1).
Programs that function exactly like this one were printed in a
variety of sources in the early days of home computing, initially
in the 1982 Commodore 64 User’s Guide,
and later online, on the Web. (The published versions of the
program are documented at the end of this book, in
“Variants of 10 PRINT.”) This well-known one-liner from the 1980s was recalled by one of the
book’s authors decades later, as discussed in
“A Personal Memory of 10 PRINT” in the BASIC chapter. This program
is not presented here as valuable because of its extreme popularity
or influence. Rather, it serves as an example of an important but
neglected type of programming practice and a gateway into a deeper
understanding of how computing works in society and what the
writing, reading, and execution of computer code mean.
ONE LINE



This book is unusual in its focus on a single line of code, an
extremely concise BASIC program that is simply called
10 PRINT  throughout. Studies of individual, unique works abound in the
humanities. Roland Barthes’s S/Z,
Samuel Beckett’s Proust,
Rudolf Arnheim’s Genesis of a Painting: Picasso’sGuernica,
Stuart Hall et al.’s Doing Cultural Studies: The Story of the Sony Walkman,
and Michel Foucault’s Ceci n’est pas une pipe
all exemplify the sort of close readings that deepen our
understanding of cultural production, cultural phenomena, and the
Western cultural tradition. While such literary texts, paintings,
and consumer electronics may seem significantly more complex than a
one-line BASIC program, undertaking a close study of
10 PRINT  as a cultural artifact can be as fruitful as close readings of
other telling cultural artifacts have been.
In many ways, this extremely intense consideration of a single line
of code stands opposed to current trends in the digital humanities,
which have been dominated by what has been variously called distant
reading (Moretti 2007), cultural analytics (Manovich 2009), or
culturomics (Michel et al. 2010). These endeavors consider massive
amounts of text, images, or data — say, millions
of books published in English since 1800 or a million Manga
pages — and identify patterns and trends that
would otherwise remain hidden. This book takes the opposite
approach, operating as if under a centrifugal force, spiraling
outward from a single line of text to explore seemingly disparate
aspects of culture. Hence its approach is more along the lines of
Brian Rotman’s Signifying Nothing
(1987), which documents the cultural importance of the symbol 0.
Similarly, it turns out that in the few characters of
10 PRINT,
there is a great deal to discover regarding its texts, contexts,
and cultural importance.
By analyzing this short program from multiple viewpoints, the
book explains how to read code deeply and shows what benefits can come
from such readings. And yet, this work seeks to avoid fetishizing
code, an error that Wendy Chun warns about (2011,
51–54), by deeply considering context and the
larger systems at play. Instead of discussing software merely as an
abstract formulation, this book takes a variorum approach, focusing
on a specific program that exists in different printed variants and
executes on a particular platform. Focusing on a particular
single-line program foregrounds aspects of computer programs that
humanistic inquiry has overlooked. Specifically, this one-line
program highlights that computer programs typically exist in
different versions that serve as seeds for learning, modification,
and extension. Consideration of 10 PRINT
offers new ways of thinking about how professional programmers,
hobbyists, and humanists write and read code.
The book also considers how the program engages with the cultural
imagination of the maze, provides a history of regular repetition
and randomness in computing, tells the story of the BASIC
programming language, and reflects on the specific design of the
Commodore 64. The eponymous program is treated as a distinct
cultural artifact, but it also serves as a grain of sand from which
entire worlds become visible; as a Rosetta Stone that yields
important access to the phenomenon of creative computing and the
way computer programs exist in culture.

CORE CONTRIBUTIONS



The subject of this book — a one-line program for
a thirty-year-old microcomputer — may strike some
as unusual and esoteric at best, indulgent and perverse at worst.
But this treatment of 10 PRINT
was undertaken to offer lessons for the study of digital media more
broadly. If they prove persuasive, these arguments will have
implications for the interpretation of software of all
kinds.
First, to understand code in a critical, humanistic way, the
practice of scholarship should include programming: modifications,
variations, elaborations, and ports of the original program, for
instance. The programs written for this book sketch the range of
possibilities for maze generators within Commodore 64 BASIC and
across platforms. By writing them, the 10 PRINT
program is illuminated, but so, too, are some of the main
platforms of home computing, as well as the many distinctions between
Commodore 64 BASIC and contemporary
programming environments.


CRITICAL CODE STUDIES, SOFTWARE STUDIES, PLATFORM STUDIES
Critical Code Studies (CCS) is the application of critical theory
and hermeneutics to the interpretation of computer source code, as
defined by one of this book’s authors (Marino
2006). During an online, collaborative conference, another of this
book’s authors challenged the 2010 Critical Code
Studies Working Group to apply these methodologies to the one-line
program that is this book’s focus (Montfort
2010). Until then, a number of exemplary readings had taken up
software and other encoded objects possessing considerably more
code, clear social implications (for example, a knowledge base
about terrorists), and more free space for writing of human
significance in the form of comments or variable names. Members of
the working group had demonstrated they could interpret a large
program, a substantial body of code, but could they usefully
interpret a very spare program such as this one? What followed,
with some false starts, was a great deal of productive discussion,
an article in Emerging Language Practices
(Marino 2010), and eventually this book, with those who replied in
the Critical Code Studies Working Group thread being invited to
work together as coauthors.
CCS is a set of methodologies for the exegesis of code. Working
together with platform studies, software studies, and media
archaeology and forensics, critical code studies uses the source
code as a means of entering into discussion about the technological
object in its fullest context. CCS considers authorship, design
process, function, funding, circulation of the code, programming languages
and paradigms, and coding conventions. It involves reading code
closely and with sustained and rigorous attention, but is not
limited to the sort of close reading that is detached from
historical, biographical, and social conditions. CCS invites
code-based interpretation that invokes and elucidates
contexts.
This book also employs other approaches to the interpretation of
technical objects and culture, notably software studies and
platform studies. While software studies can include the
consideration and reading of code, it generally emphasizes the
investigation of processes, focusing on function, form, and
cultural context at a higher level of abstraction than any
particular code. Platform studies conversely focuses on the lower
computational levels, the platforms (hardware system, operating
system, virtual machines) on which code runs. Taking the design of
platforms into account helps to elucidate how concepts of computing
are embodied in particular platforms, and how this specificity
influences creative production across all code and software for a
particular system. This book examines one line of code as a means
of discussing issues of software and platform.
In addition to being approaches, software studies and platform
studies also refer to two book series from MIT Press. This book is
part of the Software Studies series.



Second, there is a fundamental relationship between the formal
workings of code and the cultural implications and reception of
that code. The program considered in this book is an aesthetic
object that invites its authors to learn about computation and to
play with possibilities: the importance of considering specific
code in many situations. For instance, in order to fully understand
the way that redlining (financial discrimination against residents
of certain areas) functions, it might be necessary to consider the
specific code of a bank’s system to approve
mortgages, not simply the appearance of neighborhoods or the
mortgage readiness of particular populations.
This book explores the essentials of how a computer
interprets code and how particular platforms relate to the code written on them. It
is not a general introduction to programming, but instead focuses
on the connection of code to material, historical, and cultural
factors in light of the particular way this code causes its
computer to operate.
Third, code is ultimately understandable. Programs cause a computer
to operate in a particular way, and there is some reason for this
operation that is grounded in the design and material reality of
the computer, the programming language, and the particular program.
This reason can be found. The way code works is not a divine
mystery or an imponderable. Code is not like losing your keys and
never knowing if they’re under the couch or have
been swept out to sea through a storm sewer. The working of code is
knowable. It definitely can
be understood with adequate time
and effort. Any line of code from any program can be as thoroughly
explicated as the eponymous line of this book.
Finally, code is a cultural resource, not trivial and only
instrumental, but bound up in social change, aesthetic projects,
and the relationship of people to computers. Instead of being
dismissed as cryptic and irrelevant to human concerns such as art
and user experience, code should be valued as text with machine and
human meanings, something produced and operating within
culture.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10



The pattern produced by this program is represented on the
endpapers of this book. When the program runs, the characters
appear one at a time, left to right and then top to bottom, and the
image scrolls up by two lines each time the screen is filled. It
takes about fifteen seconds for the maze to fill the screen when
the program is first run; it takes a bit more than a second for
each two-line jump to happen as the maze scrolls upward.
Before going through different perspectives on this program, it is
useful to consider not only the output but also the specifics of
the code — what exactly it is, a single token at a
time. This will be a way to begin to look at how much lies behind
this one short line.
10



The only line number is this program is 10, which is the most
conventional starting line number in BASIC. Most of the programs in
the Commodore 64 User’s Guide start with line 10, a choice that was typical in other books and
magazines, not only ones for this system. Numbering lines in
increments of 10, rather than simply as 1, 2, 3, . . . , allows for
additional lines to be inserted more easily if the need arises
during program development: the lines after the insertion point
will not have to be renumbered, and references to them (in
GOTO  and GOSUB commands) will not have to be changed.
The standard version of BASIC for the Commodore 64, BASIC version 2
by Microsoft, invited this sort of line numbering practice. Some
extensions to this BASIC later provided a RENUMBER
or RENUM  command that would automatically redo the line numbering as 10, 20,
30, and so on.
This convenience had a downside: if the line numbers were spaced
out in a meaningful way so that part of the work was done beginning
at 100, another segment beginning at 200, and so on, that
thoughtful segmentation would be obliterated. In any case,
RENUMBER was not provided with the version of BASIC that shipped on the Commodore
64.
One variant of this program, which was published in the
Commodore-specific magazine RUN,
uses 8 as its line number. This makes this variant of the program
more concise in its textual representation, although it does not
change its function and saves only one byte of
memory — for each line of BASIC stored in RAM, two
bytes are allocated for the line number, whether it is 1 or the
maximum value allowed, 63999. The only savings in memory comes
from GOTO 10  being shortened to GOTO 8.
Any single digit including 1 and even 0 could have been used
instead. Line number variation in the RUN
variants attests to its arbitrariness for function, demonstrating
that 10 was a line-numbering convention, but was not required. That
8 was both arbitrary and a specific departure from convention may
then suggest specific grist for interpretation. For a one-line
program that loops forever, it is perhaps appealing to number that
line 8, the endlessly looping shape of an infinity symbol turned
upon its side. However, whether the program is numbered 8 or 10,
the use of a number greater than 0 always signals that
10 PRINT(or 8PRINT) is, like Barthes’s “work,” “a
fragment of substance,” partial with potential for more
to be inserted and with the potential to be extended (Barthes 1977,
142).
Why are typed line numbers required at all in a BASIC program?
Programs written today in C, Perl, Python, Ruby, and other
languages don’t use line numbers as a language
construct: they aren’t necessary in BASIC
either, as demonstrated by QBasic and Visual Basic, which
don’t require them. If one wants a program
to branch to a particular statement, the language can simply allow
a label to be attached to the target line instead of a line number.
Where line numbers particularly helped was in the act of editing a
program, particularly when using a line editor or without access to
a scrolling full-screen editor. The Commodore 64 does allow limited
screen editing when programming in BASIC: the arrow keys can be
used to move the cursor to any visible line, that line can be
edited, and the new version of the line can be saved by pressing
RETURN. This is a better editing capability than comes standard on
the Apple II, but there is still no scrollback (no ability to go
back past the current beginning of the screen) in BASIC on
the Commodore 64. Line numbers provide a convenient way to get back to
an earlier part of the program and to list a particular line or
range of lines. Typing a line number by itself will delete the
corresponding line, if one exists in memory. The interactive
editing abilities that were based on line numbers were well
represented even in very early versions of BASIC, including the
first version of the BASIC that ran on the Dartmouth Time-Sharing
System. Line numbers thus represent not just an organizational
scheme, but also an interactive affordance developed in a
particular context.

{SPACE}



The space between the line number 10 and the keyword
PRINT is actually optional, as are all of the spaces in this program. The variant
line 10PRINT CHR$(205.5+RND(1));:GOTO10will
function exactly as the standard 10 PRINT
with spaces does. The spaces are of course helpful to the person
trying to type in this line of code correctly: they make it more
legible and more understandable.
Even in this exceedingly short program, which has no variables (and
thus no variable names) and no comments, the presence of these
optional spaces indicates some concern for the people who will deal
with this code, rather than merely the machine that will process
it. Spaces acknowledge that the code is both something to be
automatically translated to machine instructions and something to
be read, understood, and potentially modified and built upon by
human programmers. The same acknowledgment is seen in the way that
the keywords are presented in their canonical form. Instead
of PRINT the short form ? could be used instead, and there are Commodore-specific
two-character abbreviations that allow the other keywords to be
entered quickly (e.g., GOTOcan typed as G followed by SHIFTO.) Still, for clarity, the longer (but
easier-to-read) version of these keywords is shown in this program,
as it is in printed variants.

PRINT



The statement PRINT causes its argument to be displayed on the screen. The argument to
PRINT can take a variety of forms, but here it is a string that is in
many ways like the famous string “HELLO
WORLD.” In PRINT “HELLOWORLD” the
output of the statement is simply the string literal,
the text between double quotes. The string in the maze-generating
program is generated by a function, and the output of each
PRINT execution consists of only a single character, but it is nevertheless a
string.
Today the PRINT command is well known, as are many similarly named print commands
in many other programming languages. It is easy to overlook that,
as it is used here, PRINT does not literally “print” anything in
the way the word normally is used to indicate reproduction by
marking a medium, as with paper and ink — instead,
it displays. To send output to a printer, PRINT
must be followed by # and the appropriate device number, then a
comma, and then the argument that is to be printed. By default,
without a device number, the output goes to the
screen — in the case of the Commodore 64, a
television or composite video monitor.
When BASIC was first developed in 1964 at Dartmouth College,
however, the physical interface was different. Remarkably, the
language was designed for college students to use in interactive
sessions, so that they would not have to submit batch jobs on punch
cards as was common at the time. However, the users and programmers
at Dartmouth worked not at screens but at print terminals,
initially Teletypes. A PRINT
command that executed successfully did actually cause something to
be printed. Although BASIC was less than twenty years old when a
version of it was made for the Commodore 64, that version
nevertheless has a residue of history, leftover terms from before a
change in the standard output technology. Video displays replaced
scrolls of paper with printed output, but the keyword
PRINT  remained.

CHR$



This function takes a numeric code and returns the corresponding
character, which may be a digit, a letter, a punctuation mark, a
space, or a “character graphic,” a
nontypographical tile typically displayed alongside others to
create an image. The standard numerical representation of
characters in the 1980s, still in wide use today, is ASCII (the
American Standard Code for Information Interchange), a seven-bit
code that represents 128 characters. On the Commodore 64 and
previous Commodore computers, this representation was extended, as
it often was in different ways on different systems. In extensions
to ASCII, the other 128 numbers that can be represented in eight
bits are used for character graphics and other symbols.
The Commodore 64’s character set, which had been
used previously on the Commodore PET, was nicknamed
PETSCII.
The complement to CHR$ is the function ASC
which takes a quoted character and returns the corresponding
numeric value. A user who is curious about the numeric value of a
particular character, such as the capital letter A, can type
PRINTASC("A") and
see the result, 65. A program can also use ASC
to convert a character to a numeric representation, perform
arithmetic on the number that results, and then convert the new
number back to a character using CHR$.
In lowercase mode, this can be used to shift character between
uppercase and lowercase, or this sort of manipulation might be used
to implement a substitution cipher.
Character graphics exist as special tiles that are more graphical
than typographical, more like elements of a mosaic than like pieces
of type to be composed on a press. That is, they are mainly
intended to be assembled into larger graphical images rather than
“typeset” or placed alongside
letters, digits, and punctuation. But these special tiles do exist
in a typographical framework: a textual system, built on top of a
bitmapped graphic display, is reused for graphical purposes. This
type of abstraction may not be a smooth, clean way of accomplishing
new capabilities, but it represents a rather typical way in which a
system, adapted for a new, particular purpose, can be retrofitted
to do something else.

(



CHR$ and RND are both functions, so the keyword is followed in both cases by an
argument in parentheses. CHR$
ends with the dollar sign to indicate that it is a string function
(it takes a numeric argument and returns a string), while
RND does not, since it is an arithmetic function (it takes a numeric
argument and returns a number). The parentheses here also make
clear the order of arithmetic operations. For instance,
RND(1-2) is the same as RND(-1),
while RND(1)-2 is two subtracted from the whatever value is returned by
RND(1).

205.5



All math in Commodore BASIC is done on floating point numbers
(numbers with decimal places). When an integer result is needed (as
it is in the case of CHR$), the conversion is done by BASIC automatically. If
this value, 205.5, were to be converted into an integer directly,
it would be truncated (rounded down) to become 205. If more than 0.5
and less than 1 is added to 205.5, the integer result will be
206.
This means the character printed will either be the one
corresponding to 205 or the one corresponding to 206: ∖ or ∕.
A quirk of the Commodore 64 character set is that these two
characters, and a run of several character graphics, have two
numeric representations. Characters 109 and 110 duplicate 205 and
206, meaning that 109.5 could replace 205.5 in this program and the
identical output would be produced.

+



This symbol indicates addition, of course. It is less obvious that
this is the addition of two floating point numbers with a floating
point result; Commodore 64 BASIC always treats numbers as floating
point values when it does arithmetic. The first number to be added
is 205.5; the second is whatever value that RND
returns, a value that will be between 0 and 1. On the one hand,
because all arithmetic is done in floating point, figuring out a
simple 2 + 2 involves more number crunching and takes longer than
it would if integer arithmetic was used. On the other hand, the
universal use of floating point math means that an easy-to-apply,
one-size-fits-all mathematical operation is provided for the
programmer by BASIC. Whether the programmer wishes to add
temperatures, prices, tomato soup cans, or anything else,
“+” will work.
The mathematical symbol “+”
originated, like “&,” as an
abbreviation for “and.” As is still
conventional on today’s computers, the Commodore
64 has a special “plus” or addition
key but does not have any way to type a multiplication sign or a
division sign. While they appear in some eight-bit codes that
extend ASCII and in Unicode, the multiplication and division signs
are absent from ASCII and from PETSCII. Instead, the asterisk (*)
and the slash, virgule, or solidus (/) are used. Given the
computer’s development as a machine for the
manipulation of numbers, it is curious that typographical symbols
have to be borrowed from their textual uses
(“*” indicating a footnote,
“/” a line break or a juxtaposition
of terms) and pressed into service as mathematical symbols. But
this has to do with the history of computer input devices, which in
early days included teletypewriters,
devices that were not originally made for mathematical
communication.

RND



This function returns a (more or less) random number, one which is
between 0 and 1. The number returned is, more precisely,
pseudorandom. While the sequence of numbers generated has no easily
discernible pattern and is hard for a person to predict, it is
actually the same sequence each time. This is not entirely a
failing; the consistent quality of this
“random” output allows other
programs to be tested time and time again by a programmer and for
their output to be compared for consistency.
It is convenient that the number is always between 0 and 1; this
allows it to easily be multiplied by another value and scaled to a
different range. If one wishes to pick between two options at
random, however, one can also simply test the random value to see
if it is greater than 0.5. Or, as is done in this program, one can
add 205.5 and convert to an integer so that 205 is produced with
probability 0.5 and 206 with probability 0.5.
More can be said about randomness, and much more is said in the
chapter on the topic.

1



When RNDis given  any positive value (such as this 1) as an argument, it produces a
number using the current seed. This means that when RND(1)
is invoked immediately after startup, or before any other
invocation of RND,
it will always produce the same result: 0.185564016. The next
invocation will also be the same, no matter which Commodore 64 is
used or at what time, and the next will be the same, too. Since the
sequence is deterministic, the pattern produced by the
10 PRINT  program, when run before any other invocation of
RND, is a complex-looking one that is always the same.

;



Using a semicolon after a string in a PRINT
statement causes
the next string to be printed immediately after the previous one,
without a newline or any spaces between them. Other options include
the use of a comma, which moves to the next tab stop (10 spaces),
or the use of no symbol at all, which causes a new line to be printed and advances printing to
the next line. Although this use of the semicolon for output
formatting was not original to BASIC, the semicolon was introduced
very early on at Dartmouth, in version 2, a minor update that had
only one other change. The semicolon here is enough to show that
not only short computer programs like this one, but also the
languages in which they are written, change over time.

:



The colon separates two BASIC statements that could have been
placed on different lines. In a program like this on the original
Dartmouth version of BASIC, each statement would have to be on its
own line, since, to keep programs clear and uncluttered, only a
single statement per line is allowed. The colon was introduced by
Microsoft, the leading developer of microcomputer BASIC
interpreters, as one of several moves to allow more code to be
packed onto home computers.

GOTO



This is an unconditional branch to the line
indicated — the program’s only
line, line 10. The GOTO
keyword and line number function here to return control to an
earlier point, causing the first statement to be executed
endlessly, or at least until the program is interrupted, either by
a user pressing the STOP key or by shutting off the
power.
GOTO,
although not original to BASIC, came to be very strongly associated
with BASIC. A denunciation of GOTO
is possibly the most-discussed document in the history of
programming languages; this letter (discussed in the
“Regularity” chapter) plays an
important part in the move from unstructured high-level languages
such as BASIC to structured languages such as ALGOL, Pascal, Ada,
and today’s object-oriented programming
languages, which incorporate the control structures and principles
of these languages.

RUN



Once a BASIC program is entered into the Commodore 64, it is set
into motion, executed, by the RUN
command. Until RUN
is typed, the program
lies dormant, full of potential but inert. RUN
is therefore an essential token yet is not itself part of the
program. RUN
is what is needed to actualize the program.
In a similar fashion, describing the purpose of each of the twelve
tokens in 10 PRINTdoes
address the underlying complexity of the program. A token-by-token
explanation is like a clumsy translation from BASIC into English,
naively hewing to a literal interpretation of every single
character. Translation can happen this way, of course, but it
glosses over nuance, ambiguity, and most important, the cultural,
computational, and historical depth hidden within this one line of
code. Plumbing those depths is precisely the goal of the rest of
this book. The rest of this book is the RUN
to the introduction here. So, as the Commodore 64 says . .
.
READY.


PLAN OF THE BOOK



The more general discussions in this book are organized in five
chapters and a conclusion. Preceding each of the five chapters and
before the conclusion are six
“remarks.” These are more specific
discussions of particular computer programs directly related
to 10 PRINT;
they are programs that the authors have found or (in the spirit of
early Commodore 64 BASIC programmers, who were encouraged to
modify, port, and elaborate code and who often did so) ones that
the authors have developed to shed light on how 10 PRINT
works. These remarks are indicated with
“REM” to refer to the BASIC
statement of that name, one that allows programmers to use a line
of a program to write a remark or comment, such as
55 REM START OFMAINLOOP.
The first chapter, Mazes, offers the cultural context for reading a
maze pattern in 1982. The chapter plumbs cultural and scientific
associations with the maze and some of the history of mazes in
computing as well. Regularity, the second chapter, considers the
aspects of 10 PRINT
that repeat in space, in time, and in the
program’s flow of control. The aesthetic and
computational nature of repetition is discussed as well as the
interplay between regularity and randomness. The third chapter,
Randomness, offers a look at cultural uses and understandings of
randomness and chance, as they are generated in games, by artists,
and in simulations. It aims to show that behind a simple, commonly used capability of the computer
lie numerous historical associations and uses, from the playful to
the extraordinarily violent. BASIC, the fourth chapter, explains
the origins of BASIC and describes how this language came to home
computing. The ways in which short BASIC programs were circulated
is also discussed. The fifth chapter, The Commodore 64, delves into
the computer’s history, exploring the machine on
which 10 PRINT
runs. The most relevant technical topics, including the PETSCII
character set, the VIC-II video chip, and the KERNAL (the Commodore
64’s operating system, stored in 8K of ROM) are
also discussed. This chapter situates 10 PRINT
in the context of its platform and that
platform’s rich cultural contexts.
The remarks reflect on a series of slight variations in the
original BASIC program, all of which are also in Commodore 64
BASIC; on ports of 10 PRINT
to different languages and computers; on several ports and
elaborations of 10 PRINTon
the Processing platform; on a collection of one-liners, including
some Commodore 64 BASIC one-liners found in early 1980s print
sources; on an Atari VCS port of the program; and on some greatly
elaborated versions of the program in Commodore 64 BASIC. The last
remark includes elaborations that generate stable full-screen
mazes, allow a user to navigate a symbol around those mazes, and
test those generated mazes for solubility.
One line of code gives rise here to an assemblage of readings by
ten authors, offering a hint of what the future could
hold — should personal computers once again invite
novice programmers to RUN.


10 PRINT CHR$(205.5+RND(1)); : GOTO 10
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RANDOM GRAPHICS

As a final note on random numbers, and as an introduction fo design-
ing graphics, toke a moment o enter and run this neat little program:

10 PRINT " (CLR/HOME]"

20 PRINT CHRS (205.5 + RND(1));
40 GoTO 20

As you may have expected, line 20 is the key here. Another function,
CHRS (Character String), gives you a character, based on a standard
code number from 0 fo 255. Every character the Commodore 64 can
print is encoded this way (see Appendix F).

To quickly find out the code for any character, just type:

PRINT ASC("X")

where X is the character you're checking (this can be any printable

character, including graphics). The response is the code for the char-

acter you typed. As you probably figured out, “ASC" is another function,

which returns the standard “ASCII” code for the character you typed.
You can now print tha character by fyping:

PRINT CHRS(X)
If you try typing:
PRINT CHRS (265); CHR$(206)

you will see the two right side graphic characters on the M and N keys.
These are the two characters thot the program is using for the moze.

By using the formula 205.5 + RND(1) the computer wil pick @ random
number befween 205.5 and 206.5. There is  fifty-fifty chance of the
number being above or below 206. CHRS ignores any fractional values,
50 half the fime the character with code 205 is printed and the remain-
ing time code 206 is displayed.

1f you'd like to experiment with this program, try changing 205.5 by
adding or subiracting a couple fenths from it. This will give either char-
acter o greater chance of being selected.

5





OEBPS/Images/image00254.jpeg
Figure 65.1

“Maze Walker” can determine whether a maze has solution (top) or not (oottom).
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Figure 60.9
PETSCII character 206 (left) goes edge to edge within the grid, while character

47 (right), the forward slash, leaves space on the top and bottom for better spacing

when used within a block of text





OEBPS/Images/image00247.jpeg
r
n__:.uan m






OEBPS/Images/image00246.jpeg
136

A
L)

(L

S
NS CHAS | PRINTS _CHRs | PINTS CHRS | PAINTS _CHRS ‘tj o
[} 68 | (4] o | @ 12| H 155 e
E e | [IJ o | N 127 156 ei\. |
F o (B 99 2 | @@ 157 l\?‘. =
9 1 =) 100 | (4] 120 | M 158 eﬁ\- CODES
H (B 1o 10 | BB 1se E‘:r. CODES
0 e B e 181 160 %{\' CODE
J 77 |0 103 w2 | e
K s | O 104 | 1 133 | 162 et[\'
L 76\ 1) o 105, | et tatiil i BN 63| E\r'
M g B 06 | s ras | O 1e4| ejﬂ
N | wo|e we| O e :jﬂ
o 7 | O 108 | 2 137 B e
P 0 [N 109 | 14 13| [ 167 ag
] & | A 1o | 6 130 | Ed tes H\.
R 2 | O 11| 8 1e0 | P 16 5\|$
s 83 | O 12 1-@« a
Tow @ m Tl R
fetatiie | T NS
v 6 ¥ ns | g | (B m ‘\$
W ez I8[E] e s | Al 17a S
x 8 |4 7| B e | D s ‘\I\‘
0% o (X e | B w| B e ‘7—-
z 0|0 no | @ w| B w S s
t 9 |® | g e B e el
e o [0 = X | H @\‘ﬂ
1 o [@# 12| 0 | O 1w . Bt
1 9 (B 12 | & 12| D 8 e
- o [E 126 | [ 13| A 182 g:r’
B e [[M 12| @ 11| O 18 |





OEBPS/Images/image00245.jpeg
-

=
S22






OEBPS/Images/image00244.jpeg





OEBPS/Images/image00243.jpeg





OEBPS/Images/image00242.jpeg
IF PERSONAL COMPUTERS
ARE FOR EVERYBODY,
HOW COME THEY'RE PRICED

S Soppoaed o boe chalenging
computer forpersons, e — SFIW tose you coukd
Not st wealh ever pbyona

i
persons Or whiz-kid & % % game machine alone.
persons, Or privileged And as great as all
POt person persons, APPLE‘Nle 64K TRS-80" Il 16K 1BM* PC 64K el
Inother words, all the persons whom ~ other home T idin s the price, It's hundreds of dollars less
Apple, IBM, and Radio Shack seemto  some of th th lotmore. than that of our nearest competitor.
have forgotten about (including, most  (Take anc ok at the three comput hile other companies are trying
kel you). ers sbove) ihe compte
Butithat's okay. Because now you can By itself, the Commodore 64 s all ¢ 1o us they're really.
o fighpowered home computer tho! ol Uil taking a0
Wihout t3king out & Second mo ¥ou 4 Ther
Snyourhome Some dayyou can dosobyaddnga. et
Its the Commodore 64. V mplement of Cornr i
talking bout a low-prc
G brely refain a phone numb
We're talking about a memary of 64K nais0 gam commodore

Whichimemnsilcanperorm sk - f i1 COMPUTER

vxtgiz!!mwo»oni 4. UNDER $600.

canitbuy a better gemputer at twice the price






